\(A=x^2+y^2-xy-3y+2016\)
\(\Leftrightarrow A=\left(x^2-xy+\frac{y^2}{4}\right)+\left(\frac{3y^2}{4}-3y+3\right)+2013\)
\(\Leftrightarrow A=\left(x-\frac{y}{2}\right)^2+3\left(\frac{y}{2}-1\right)^2+2013\ge2013\)
Dấu '' = '' xảy ra khi và chỉ khi \(\hept{\begin{cases}x-\frac{y}{2}=0\\\frac{y}{2}-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{y}{2}\\\frac{y}{2}=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=2\end{cases}}}\)
Vậy Min A= 2013 \(\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\)
A=(x^2-xy+1/4 . y^2)+3(1/4. y^2 -y +1)+2013
=(x-1/2y)^2 +3(1/2y-1)^2+2013
Mà (x-1/2y)^2>=0 ; (1/2y-1)^2>=0
=> A>=2013
Dấu = xảy ra <=> x=1/2y và 1/2y=1 <=> x=1 và y=2