Tìm x để \(\dfrac{\sqrt{x}-1}{\sqrt{x}}\) < 0
A=\(\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\)(x≥0,x≠4,x≠9)
1,Tìm x để A.\(\sqrt{x}\)=-1
2,Tìm x∈ Z để A∈Z
3, Tìm Min \(\dfrac{1}{A}\)
4,Tìm x∈N để A là số nguyên dương lớn nhất
5,Khi A+\(|A|\)=0, tìm GTLN của bth A.\(\sqrt{x}\)
1: Ta có: \(A=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\)
\(=\dfrac{2\sqrt{x}-9-\left(x-9\right)+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{2\sqrt{x}-9-x+9+2x-4\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{x-\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)
Để \(A=-\dfrac{1}{\sqrt{x}}\) thì \(x+\sqrt{x}=-\sqrt{x}+3\)
\(\Leftrightarrow x+2\sqrt{x}-3=0\)
\(\Leftrightarrow\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)=0\)
\(\Leftrightarrow x=1\left(nhận\right)\)
2: Để A nguyên thì \(\sqrt{x}+1⋮\sqrt{x}-3\)
\(\Leftrightarrow\sqrt{x}-3\in\left\{-1;1;2;-2;4;-4\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{2;4;5;1;7\right\}\)
\(\Leftrightarrow x\in\left\{16;25;1;49\right\}\)
9. A = \(\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\) tìm x để A>1 với x 0;x 1
10. P = \(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)Tìm x để P <1 với x 0 ; x 1
9.
\(A>1\Leftrightarrow\dfrac{\sqrt{x}-2}{\sqrt{x}-1}>1\)
\(\Leftrightarrow\dfrac{\sqrt{x}-2}{\sqrt{x}-1}-1>0\)
\(\Leftrightarrow\dfrac{\sqrt{x}-2-\sqrt{x}+1}{\sqrt{x}-1}>0\)
\(\Leftrightarrow\dfrac{-1}{\sqrt{x}-1}>0\)
\(\Leftrightarrow\sqrt{x}-1< 0\)
\(\Leftrightarrow x< 1\)
Kết hợp với điều kiện giả thiết.
10.
\(P< 1\Leftrightarrow\dfrac{\sqrt{x}+1}{\sqrt{x}-1}< 1\)
\(\Leftrightarrow\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-1< 0\)
\(\Leftrightarrow\dfrac{\sqrt{x}+1-\sqrt{x}+1}{\sqrt{x}-1}< 0\)
\(\Leftrightarrow\dfrac{2}{\sqrt{x}-1}< 0\)
\(\Leftrightarrow\sqrt{x}-1< 0\)
\(\Leftrightarrow x< 1\)
Kết hợp với điều kiện giả thiết.
Bài 9:
Để A>1 thì A-1>0
\(\Leftrightarrow\dfrac{\sqrt{x}-2-\sqrt{x}+1}{\sqrt{x}-1}>0\)
\(\Leftrightarrow\dfrac{-1}{\sqrt{x}-1}>0\)
\(\Leftrightarrow\sqrt{x}-1< 0\)
hay x<1
Kết hợp ĐKXĐ, ta được: \(0\le x< 1\)
Bài 10:
Để P<1 thì P-1<0
\(\Leftrightarrow\dfrac{\sqrt{x}+1-\sqrt{x}+1}{\sqrt{x}-1}< 0\)
\(\Leftrightarrow\dfrac{2}{\sqrt{x}-1}< 0\)
\(\Leftrightarrow\sqrt{x}-1< 0\)
hay x<1
Kết hợp ĐKXĐ, ta được: \(0\le x< 1\)
7. P = \(\dfrac{x+\sqrt{x}}{\sqrt{x}-1}\) tìm x để P< 1 với x ≥ 0 , x ≠ 4
8. P = \(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\) tìm x để P < 1/4 với x≥0, x ≠ 1
8: Để \(P< \dfrac{1}{4}\) thì \(P-\dfrac{1}{4}< 0\)
\(\Leftrightarrow\dfrac{4\sqrt{x}-8-\sqrt{x}-1}{\sqrt{x}+1}< 0\)
\(\Leftrightarrow3\sqrt{x}< 9\)
hay x<9
Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}0\le x< 9\\x\ne1\end{matrix}\right.\)
7.
\(P< 1\Leftrightarrow\dfrac{x+\sqrt{x}}{\sqrt{x}-1}< 1\)
\(\Leftrightarrow\dfrac{x+\sqrt{x}}{\sqrt{x}-1}-1< 0\)
\(\Leftrightarrow\dfrac{x+\sqrt{x}-\sqrt{x}+1}{\sqrt{x}-1}< 0\)
\(\Leftrightarrow\dfrac{x+1}{\sqrt{x}-1}< 0\)
\(\Leftrightarrow\sqrt{x}-1< 0\)
\(\Leftrightarrow x< 1\)
Vậy \(0\le x< 1\)
8.
\(P< \dfrac{1}{4}\Leftrightarrow\dfrac{\sqrt{x}-2}{\sqrt{x}+1}< \dfrac{1}{4}\)
\(\Leftrightarrow4\left(\sqrt{x}-2\right)< \sqrt{x}+1\)
\(\Leftrightarrow4\sqrt{x}-8< \sqrt{x}+1\)
\(\Leftrightarrow3\sqrt{x}< 9\)
\(\Leftrightarrow x< 9\)
Vậy \(0\le x< 9;x\ne1\)
5. P = \(\dfrac{x-4\sqrt{x}}{\sqrt{x}+2}\) tìm để P > 0 với x ≥0, x ≠4
6. P = \(\dfrac{\sqrt{a}-4}{\sqrt{a}-2}\) tìm a để P > 1 với a ≥ 0, x ≠ 1
6: Để P>1 thì P-1>0
\(\Leftrightarrow\dfrac{\sqrt{a}-4-\sqrt{a}+2}{\sqrt{a}-2}>0\)
\(\Leftrightarrow\sqrt{a}-2< 0\)
hay a<4
Kết hợp ĐKXĐ, ta được: \(0\le a< 4\)
5: Để P>0 thì \(x-4\sqrt{x}>0\)
\(\Leftrightarrow\sqrt{x}-4>0\)
hay x>16
\(B=\dfrac{2-x}{2\sqrt{x+x}}-\dfrac{1}{\sqrt{x}}+\dfrac{2\sqrt{x}}{\sqrt{x}+2}\left(x>0;x\ne4\right)\)
a. Tìm số tự nhiên x để B đạt min
b. Tìm x để \(\sqrt{B}>\dfrac{1}{2}\)
Em kiểm tra lại đề, mẫu số của phân số đầu tiên chắc chắn bị sai
cho biểu thức:
P=\(\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{2\sqrt{x}}{x\sqrt{x}-x+\sqrt{x}-1}\right)\)\(:\left(\dfrac{x+\sqrt{x}}{x\sqrt{x}+x+\sqrt{x}+1}+\dfrac{1}{x+1}\right)\)
với x\(\ge\)0;x\(\ne\)1
1)Rút gọn P
2)Tìm x để P<\(\dfrac{1}{2}\)
3) tìm m để phương trình (\(\sqrt{x}+1\))P= m-x có nghiệm x
1: \(P=\dfrac{x+1-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+1\right)}:\dfrac{x+\sqrt{x}+\sqrt{x}+1}{\left(x+1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\sqrt{x}-1}{x+1}\cdot\dfrac{\left(x+1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(x+1\right)}=\dfrac{\sqrt{x}-1}{x+1}\)
2: P<1/2
=>P-1/2<0
=>\(2\sqrt{x}-2-x-1< 0\)
=>-x+2căn x-1<0
=>(căn x-1)^2>0(luôn đúng)
Cho \(D=\left(\dfrac{x-2}{x+2}+\dfrac{1}{\sqrt{x}+2}\right).\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\) với \(x>0; x\ne1\)
a) Tìm x để \(2D=2\sqrt{x}+5\)
b) Tìm x để D<1
c) Tìm x nguyên để D nguyên
Cho P = (\(\dfrac{\sqrt{x}}{\sqrt{x}-1 }\) - \(\dfrac{1}{x-\sqrt{x}}\))(\(\dfrac{1}{1+\sqrt{x}}\) + \(\dfrac{2}{x-1}\))
a. Tìm đkxđ và rút gọn P
b. Tìm x để P>0
a) ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\)
Ta có: \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right)\cdot\left(\dfrac{1}{1+\sqrt{x}}+\dfrac{2}{x-1}\right)\)
\(=\left(\dfrac{x}{\sqrt{x}\left(\sqrt{x}-1\right)}-\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right)\cdot\left(\dfrac{\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}+\dfrac{2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\)
\(=\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}-1+2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
b) Để P>0 thì \(\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}>0\)
mà \(\sqrt{x}+1>0\forall x\) thỏa mãn ĐKXĐ
nên \(\sqrt{x}\left(\sqrt{x}-1\right)>0\)
mà \(\sqrt{x}>0\forall x\) thỏa mãn ĐKXĐ
nên \(\sqrt{x}-1>0\)
\(\Leftrightarrow\sqrt{x}>1\)
hay x>1
Kết hợp ĐKXĐ,ta được: x>1
Vậy: Để P>0 thì x>1
\(A=\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}+\dfrac{x\sqrt{x}+1}{x+\sqrt{x}}+\dfrac{x+1}{\sqrt{x}}\)
Thu gọn và tìm x để A-|A|=0
\(A=\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}+\dfrac{x\sqrt{x}+1}{x+\sqrt{x}}+\dfrac{x+1}{\sqrt{x}}\left(x>0,x\ne1\right)\)
\(=\dfrac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}+\dfrac{x+1}{\sqrt{x}}\)
\(=\dfrac{x+\sqrt{x}+1}{\sqrt{x}}+\dfrac{x-\sqrt{x}+1}{\sqrt{x}}+\dfrac{x+1}{\sqrt{x}}=\dfrac{3x+3}{\sqrt{x}}\)
\(A-\left|A\right|=0\Rightarrow A=\left|A\right|\Rightarrow\left[{}\begin{matrix}A=A\\A=-A\end{matrix}\right.\)
mà \(x>0\Rightarrow A>0\Rightarrow A=A\) (luôn đúng với mọi \(x\in R\) )
Ta có: \(A=\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}+\dfrac{x\sqrt{x}+1}{x+\sqrt{x}}+\dfrac{x+1}{\sqrt{x}}\)
\(=\dfrac{x+\sqrt{x}+1+x-\sqrt{x}+1+x+1}{\sqrt{x}}\)
\(=\dfrac{3x+3}{\sqrt{x}}\)
Để A-|A|=0 thì A=|A|
\(\Leftrightarrow3x+3\ge0\)
hay \(x\ge-1\)
Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\)
Cho A= \(\dfrac{\sqrt{x}+4}{{}\sqrt{x}-1}\) và B= \(\dfrac{x+2\sqrt{x}}{\sqrt{x}(\sqrt{x}+1)} -\dfrac{3\sqrt{x}-3}{x-1}\) (đk: x>0,x≠1)
a) Rút gọn P=A.B
b) Tìm x để P(\(\sqrt{x}+1\)) ≤ 6-x
c) Tìm x để P nhận giá trị nguyên