Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
vinh
Xem chi tiết
dovinh
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 10 2019 lúc 14:36

\(\Leftrightarrow\frac{1}{2}cos6x+\frac{1}{2}cos4x=\frac{1}{2}cos6x+\frac{1}{2}cos2x+3cos^2x-1\)

\(\Leftrightarrow cos4x-cos2x-6cos^2x+2=0\)

\(\Leftrightarrow2cos^22x-1-cos2x-3\left(cos2x+1\right)+2=0\)

\(\Leftrightarrow2cos^22x-4cos2x-2=0\)

\(\Rightarrow\left[{}\begin{matrix}cos2x=1+\sqrt{2}>1\left(l\right)\\cos2x=1-\sqrt{2}\end{matrix}\right.\)

Bạn coi lại đề, nghiệm xấu quá, biện luận thì cũng được thôi nhưng chắc chẳng ai cho đề như vầy bao giờ cả

lu nguyễn
Xem chi tiết
gấu béo
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 8 2023 lúc 10:10

a: ĐKXĐ: sin 2x<>1

=>2x<>pi/2+k2pi

=>x<>pi/4+kpi

\(\dfrac{cos2x}{sin2x-1}=0\)

=>cos2x=0

=>2x=pi/2+kpi

=>x=pi/4+kpi/2

Kết hợp ĐKXĐ, ta được:

x=3/4pi+k2pi hoặc x=7/4pi+k2pi

b: cos(sinx)=1

=>sin x=kpi

=>sin x=0

=>x=kpi

c: \(2\cdot sin^2x-1+cos3x=0\)

=>cos3x+cos2x=0

=>cos3x=-cos2x=-sin(pi/2-2x)=sin(2x-pi/2)

=>cos3x=cos(pi/2-2x+pi/2)=cos(pi-2x)

=>3x=pi-2x+k2pi hoặc 3x=-pi+2x+k2pi

=>x=-pi+k2pi hoặc x=pi/5+k2pi/5

e: cos3x=-cos7x

=>cos3x=cos(pi-7x)

=>3x=pi-7x+k2pi hoặc 3x=-pi+7x+k2pi

=>x=pi/10+kpi/5 hoặc x=pi/4-kpi/2

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
4 tháng 11 2019 lúc 6:41

Đáp án D

Ngân Lại
Xem chi tiết
Trần Quốc Lộc
15 tháng 7 2020 lúc 10:02

\(\text{c) }sin3x-\sqrt{3}cos3x=2cos5x\\ \Leftrightarrow\frac{1}{2}sin3x-\frac{\sqrt{3}}{2}cos3x=cos5x\\ \Leftrightarrow sin\frac{\pi}{6}\cdot sin3x-cos\frac{\pi}{6}\cdot cos3x=cos5x\\ \Leftrightarrow cos\left(3x+\frac{\pi}{6}\right)=-cos5x\\ \Leftrightarrow cos\left(3x+\frac{\pi}{6}\right)=cos\left(\pi-5x\right)\\ \Leftrightarrow\left[{}\begin{matrix}3x+\frac{\pi}{6}=\pi-5x+m2\pi\\3x+\frac{\pi}{6}=5x-\pi+n2\pi\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{5\pi}{48}+\frac{m\pi}{4}\\x=\frac{7\pi}{12}-n\pi\end{matrix}\right.\)

\(d\text{) }sinx\left(sinx+2cosx\right)=2\\ \Leftrightarrow cos^2x+\left(sinx-cosx\right)^2=0\\ \Leftrightarrow cosx=sinx=0\left(VN\right)\)

\(e\text{) }\sqrt{3}\left(sin2x+cos7x\right)=sin7x-cos2x\\ \Leftrightarrow\sqrt{3}sin2x+cos2x=sin7x-\sqrt{3}cos7x\\ \Leftrightarrow sin2x\cdot\frac{\sqrt{3}}{2}+cos2x\cdot\frac{1}{2}=sin7x\cdot\frac{1}{2}-cos7x\cdot\frac{\sqrt{3}}{2}\\ \Leftrightarrow sin2x\cdot cos\frac{\pi}{3}+cos2x\cdot sin\frac{\pi}{3}=sin7x\cdot cos\frac{\pi}{3}-cos7x\cdot sin\frac{\pi}{3}\\ \Leftrightarrow sin\left(2x-\frac{\pi}{3}\right)=sin\left(7x-\frac{\pi}{3}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\frac{\pi}{3}=7x-\frac{\pi}{3}+m2\pi\\2x-\frac{\pi}{3}=\frac{4\pi}{3}-7x+n2\pi\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-m2\pi}{5}\\x=\frac{5\pi}{27}+\frac{n2\pi}{9}\end{matrix}\right.\)

Trần Quốc Lộc
15 tháng 7 2020 lúc 9:36

\(\text{a) }\sqrt{3}sin2x-cos2x+1=0\\ \Leftrightarrow\frac{\sqrt{3}}{2}sin2x-\frac{1}{2}cos2x=-\frac{1}{2}\\ \Leftrightarrow cos\frac{\pi}{3}\cdot cos2x-sin\frac{\pi}{3}\cdot sin2x=\frac{1}{2}\\ \Leftrightarrow cos\left(2x-\frac{\pi}{3}\right)=cos\frac{\pi}{3}\\ \Leftrightarrow\left[{}\begin{matrix}2x-\frac{\pi}{3}=\frac{\pi}{3}+m2\pi\\2x-\frac{\pi}{3}=-\frac{\pi}{3}+n2\pi\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{3}+m\pi\\x=n\pi\end{matrix}\right.\)

\(\text{b) }pt\Leftrightarrow sin4x=\frac{1-4cosx}{3}\\ \Leftrightarrow sin^24x+cos^24x=\left(\frac{1-cos4x}{3}\right)^2+cos^24x=1\\ \Leftrightarrow\left[{}\begin{matrix}cos4x=1\\cos4x=-\frac{4}{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}cos4x=1\\cos4x=-\frac{4}{5}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\frac{k\pi}{2}\\x=\frac{arccos\left(-\frac{4}{5}\right)}{4}+\frac{k\pi}{2}\end{matrix}\right.\)

Julian Edward
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 8 2020 lúc 23:19

a/

\(\Leftrightarrow\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)+sin2x-1=0\)

\(\Leftrightarrow1-3sin^2x.cos^2x+sin2x-1=0\)

\(\Leftrightarrow-\frac{3}{4}sin^22x+sin2x=0\)

\(\Leftrightarrow sin2x\left(1-\frac{3}{4}sin2x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin2x=0\\sin2x=\frac{4}{3}>1\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow2x=k\pi\)

\(\Leftrightarrow x=\frac{k\pi}{2}\)

Nguyễn Việt Lâm
27 tháng 8 2020 lúc 23:21

b/

\(\Leftrightarrow\left(1+sin2x\right)+sinx+cosx+cos^2x-sin^2x=0\)

\(\Leftrightarrow\left(sinx+cosx\right)^2+sinx+cosx+\left(sinx+cosx\right)\left(cosx-sinx\right)=0\)

\(\Leftrightarrow\left(sinx+cosx\right)\left(sinx+cosx+1+cosx-sinx\right)=0\)

\(\Leftrightarrow\left(sinx+cosx\right)\left(2cosx+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx+cosx=0\\2cosx+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x+\frac{\pi}{4}\right)=0\\cosx=-\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{4}+k\pi\\x=\pm\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)

Nguyễn Việt Lâm
27 tháng 8 2020 lúc 23:24

c/

\(\Leftrightarrow\left(sinx-\sqrt{3}cosx\right)\left(sinx+\sqrt{3}\right)cosx=2\left(sinx+\sqrt{3}cosx\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx+\sqrt{3}cosx=0\\sinx-\sqrt{3}cosx=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\frac{1}{2}sinx+\frac{\sqrt{3}}{2}cosx=0\\\frac{1}{2}sinx-\frac{\sqrt{3}}{2}cosx=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x+\frac{\pi}{3}\right)=0\\sin\left(x-\frac{\pi}{3}\right)=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{\pi}{3}=k\pi\\x-\frac{\pi}{3}=\frac{\pi}{2}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{3}+k\pi\\x=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)

Julian Edward
Xem chi tiết
Nguyễn Việt Lâm
31 tháng 7 2020 lúc 22:48

a/

\(\Leftrightarrow2sinx.cosx-2\sqrt{3}cos^2x-4cosx=0\)

\(\Leftrightarrow2cosx\left(sinx-\sqrt{3}cosx-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\Rightarrow x=\frac{\pi}{2}+k\pi\\sinx-\sqrt{3}cosx=2\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\frac{1}{2}sinx-\frac{\sqrt{3}}{2}cosx=1\)

\(\Leftrightarrow sin\left(x-\frac{\pi}{3}\right)=1\)

\(\Leftrightarrow x-\frac{\pi}{3}=\frac{\pi}{2}+k2\pi\)

\(\Leftrightarrow x=\frac{5\pi}{6}+k2\pi\)

Nguyễn Việt Lâm
31 tháng 7 2020 lúc 22:51

b/

\(\Leftrightarrow\left(sinx-\sqrt{3}cosx\right)\left(sinx+\sqrt{3}cosx\right)=sinx-\sqrt{3}cosx\)

\(\Leftrightarrow\left(sinx-\sqrt{3}cosx\right)\left(sinx+\sqrt{3}cosx-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=\sqrt{3}cosx\left(1\right)\\sinx+\sqrt{3}cosx=1\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow tanx=\sqrt{3}\)

\(\Rightarrow x=\frac{\pi}{3}+k\pi\)

\(\left(2\right)\Leftrightarrow\frac{1}{2}sinx+\frac{\sqrt{3}}{2}cosx=\frac{1}{2}\)

\(\Leftrightarrow sin\left(x+\frac{\pi}{3}\right)=\frac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{\pi}{3}=\frac{\pi}{6}+k2\pi\\x+\frac{\pi}{3}=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{6}+k2\pi\\x=\frac{\pi}{2}+k2\pi\end{matrix}\right.\)

Nguyễn Việt Lâm
31 tháng 7 2020 lúc 22:54

c/

\(\Leftrightarrow sin6x\left(cos3x-1-sin3x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin6x=0\Rightarrow x=\frac{k\pi}{6}\\cos3x-sin3x=1\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow sin3x-cos3x=-1\)

\(\Leftrightarrow\sqrt{2}sin\left(3x-\frac{\pi}{4}\right)=-1\)

\(\Leftrightarrow sin\left(3x-\frac{\pi}{4}\right)=-\frac{\sqrt{2}}{2}\)

\(\Rightarrow\left[{}\begin{matrix}3x-\frac{\pi}{4}=-\frac{\pi}{4}+k2\pi\\3x-\frac{\pi}{4}=\frac{5\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{k2\pi}{3}\\x=\frac{\pi}{2}+\frac{k2\pi}{3}\end{matrix}\right.\)

Thùy Oanh Nguyễn
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 9 2020 lúc 0:11

1.

\(y=\sqrt{2}sin\left(2x+\frac{\pi}{4}\right)\Rightarrow\) tập giá trị là \(\left[-\sqrt{2};\sqrt{2}\right]\)

2. ĐKXĐ: \(\left\{{}\begin{matrix}sinx\ne1\\sinx\ne-\frac{1}{2}\end{matrix}\right.\)

\(\frac{cosx-sin2x}{cos2x+sinx}=\sqrt{3}\)

\(\Leftrightarrow cosx-sin2x=\sqrt{3}cos2x+\sqrt{3}sinx\)

\(\Leftrightarrow\frac{1}{2}cosx-\frac{\sqrt{3}}{2}sinx=\frac{\sqrt{3}}{2}cos2x+\frac{1}{2}sin2x\)

\(\Leftrightarrow cos\left(x+\frac{\pi}{3}\right)=cos\left(2x-\frac{\pi}{6}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\frac{\pi}{6}=x+\frac{\pi}{3}+k2\pi\\2x-\frac{\pi}{6}=-x-\frac{\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow...\)

Nguyễn Việt Lâm
21 tháng 9 2020 lúc 0:15

3.

\(\Leftrightarrow2y+y.cosx=sinx+2cosx+3\)

\(\Leftrightarrow sinx+\left(2-y\right)cosx=2y-3\)

\(\Rightarrow1^2+\left(2-y\right)^2\ge\left(2y-3\right)^2\)

\(\Leftrightarrow3y^2-8y+4\le0\)

\(\Rightarrow\frac{2}{3}\le y\le2\)

4.

\(y=2\left(\frac{\sqrt{3}}{2}cos\frac{x}{2}-\frac{1}{2}sin\frac{x}{2}\right)=2cos\left(\frac{x}{2}+\frac{\pi}{6}\right)\)

\(\Rightarrow-2\le y\le2\)

5.

\(\frac{\sqrt{3}}{2}sin2x+\frac{1}{2}cos2x=\frac{1}{2}sin7x-\frac{\sqrt{3}}{2}cos7x\)

\(\Leftrightarrow sin\left(2x+\frac{\pi}{6}\right)=sin\left(7x-\frac{\pi}{3}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}7x-\frac{\pi}{3}=2x+\frac{\pi}{6}+k2\pi\\7x-\frac{\pi}{3}=\frac{5\pi}{6}-2x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow...\)

Nguyễn Việt Lâm
21 tháng 9 2020 lúc 0:19

6.

\(\Leftrightarrow\frac{1}{2}cos6x+\frac{1}{2}cos4x=\frac{1}{2}cos6x+\frac{1}{2}cos2x+\frac{3}{2}+\frac{3}{2}cos2x+1\)

\(\Leftrightarrow cos4x=4cos2x+5\)

\(\Leftrightarrow2cos^22x-1=4cos2x+5\)

\(\Leftrightarrow cos^22x-2cos2x-3=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=-1\\cos2x=3>1\left(ktm\right)\end{matrix}\right.\)

\(\Leftrightarrow...\)

7.

Thay lần lượt 4 đáp án ta thấy chỉ có đáp án C thỏa mãn

8.

\(\Leftrightarrow\left[{}\begin{matrix}sinx=1\\sinx=\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k2\pi\\x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Rightarrow x=\left\{\frac{\pi}{6};\frac{\pi}{2}\right\}\)

Khách vãng lai đã xóa