Cho các biểu thức
A= |-x| +2X +5 và
B= 4x -|x| +5 với x thuộc R
So sánh A và B
rút gọn biểu thức
a) (2x + 1)(x – 3) – 4x(5 – 2x)
b) (x + 2)2 – 2(x + 3)(x - 3) + 10
c) (4x – 3)(2 – x 2 ) – 2(x – 3)2 – 7x3
a: \(=2x^2-6x+x-3-20x+8x^2\)
\(=10x^2-25x-3\)
b: \(=x^2+4x+4-2\left(x^2-9\right)+10\)
\(=x^2+4x+14-2x^2+18\)
\(=-x^2+4x+32\)
1. Thu gọn biểu thức
a) (x-3) ² + 3x (x-5)
b) (3x+2) ² - (x+3) (x-3)
2. Tìm x biết a) (x+4) ² - (x+2) (x-2)=5
b) (3x-1) ² _ (2x-3) (4x+1)= 5+x ²
1.
a) \(=x^2-6x+9+3x^2-15x=4x^2-21x+9\)
b) \(=9x^2+12x+4-x^2+9=8x^2+12x+13\)
2.
a) \(\Leftrightarrow x^2+8x+16-x^2+4-5=0\\ \Leftrightarrow8x=-15\\ \Leftrightarrow x=-\dfrac{15}{8}\)
b) \(\Leftrightarrow9x^2-6x+1-8x^2+12x-2x+3-5-x^2=0\\ \Leftrightarrow4x=1\\ \Leftrightarrow x=\dfrac{1}{4}\)
1,a,=x2−6x+8+3x2−15x=4x2−21x+8b,=9x2+12x+4−x2+9=8x2+12x+132,a,⇔x2+8x+16−x2+4=5⇔8x=−15⇔x=−158b,⇔9x2−6x+1−8x2−2x+12x+3−x2=5⇔4x=1⇔x=14
Tính giá trị các biểu thức
A=126 y^3 + (x - 5y)(x^2 + 25y^2 + 5xy) với x = - 5, y = -3;
C=x^3-9x^2+27x-26 với x=23
D=(2x-3)^2+(4x-6)(4-x)+(x-4)^2 với x = 99
Bài 1:
a) 7x –12 = 5x + 3
b) 2(3x –5) –7(x + 1) = 2
c) (1 –3x)^2= (4x –3)^2
d) (2x + 3)(4x –2) –2(2x + 1)^2= 12
Bài 2:
Cho biểu thứcA = (5x –3y + 1)(7x + 2y –2)
a) Tìm x sao cho với y = 2 thì A = 0
b) Tìm y sao cho với x = -2 thì A = 0
1.
a.\(\Leftrightarrow7x-5x=3+12\)
\(\Leftrightarrow2x=15\Leftrightarrow x=\dfrac{15}{2}\)
b.\(\Leftrightarrow6x-10-7x-7=2\)
\(\Leftrightarrow x=-19\)
c.\(\Leftrightarrow1-3x=4x-3\)
\(\Leftrightarrow7x=2\Leftrightarrow x=\dfrac{2}{7}\)
d.\(\Leftrightarrow8x^2-4x+12x-6-8x^2-8x-2=12\)
\(\Leftrightarrow-2=12\left(voli\right)\)
Bài 3: Tính giá trị của biểu thức
a) A = 2x(
1
2 x 2 + y) – x(x 2 + y) + xy(x 3 – 1) tại x = 10; y = –
1
10
b) B = 3x 2 (x 2 – 5) + x(–3x 3 + 4x) + 6x 2 tại x = –5
Thực hiện phép tính :
Thực hiện phép tính :
5.x^2(x-y+1)+(x^2-1)(x+y)
Bài 2:
1: \(A=\left(x+2\right)\left(x^2-2x+4\right)+2\left(x+1\right)\left(1-x\right)\)
\(=\left(x+2\right)\left(x^2-x\cdot2+2^2\right)-2\left(x+1\right)\left(x-1\right)\)
\(=x^3+2^3-2\left(x^2-1\right)\)
\(=x^3+8-2x^2+2=x^3-2x^2+10\)
\(B=\left(2x-y\right)^2-2\left(4x^2-y^2\right)+\left(2x+y\right)^2+4\left(y+2\right)\)
\(=\left(2x-y\right)^2-2\cdot\left(2x-y\right)\left(2x+y\right)+\left(2x+y\right)^2+4\left(y+2\right)\)
\(=\left(2x-y-2x-y\right)^2+4\left(y+2\right)\)
\(=\left(-2y\right)^2+4\left(y+2\right)\)
\(=4y^2+4y+8\)
2: Khi x=2 thì \(A=2^3-2\cdot2^2+10=8-8+10=10\)
3: \(B=4y^2+4y+8\)
\(=4y^2+4y+1+7\)
\(=\left(2y+1\right)^2+7>=7>0\forall y\)
=>B luôn dương với mọi y
Bài 1:
5: \(x^2\left(x-y+1\right)+\left(x^2-1\right)\left(x+y\right)\)
\(=x^3-x^2y+x^2+x^3+x^2y-x-y\)
\(=2x^3-x+x^2-y\)
6: \(\left(3x-5\right)\left(2x+11\right)-6\left(x+7\right)^2\)
\(=6x^2+33x-10x-55-6\left(x^2+14x+49\right)\)
\(=6x^2+23x-55-6x^2-84x-294\)
=-61x-349
Cho biểu thức A = (4x+5) / x^2 + 2x +6 với x thuộc R . Tìm GTNN và GTLN của A
Ta có:
\(A=\frac{4x+5}{x^2+2x+6}=\frac{x^2+2x+6-x^2-2x-6+4x+5}{x^2+2x+6}\)
\(=\frac{\left(x^2+2x+6\right)-x^2+2x-1}{x^2+2x+6}=1-\frac{\left(x-1\right)^2}{x^2+2x+6}\le1\)
=> max A = 1 tại x = 1
\(A=\frac{4x+5}{x^2+2x+6}=\frac{-\frac{4}{5}\left(x^2+2x+6\right)+\frac{4}{5}\left(x^2+2x+6\right)+4x+5}{x^2+2x+6}\)
\(=-\frac{4}{5}+\frac{4x^2+28x+49}{5\left(x^2+2x+6\right)}=-\frac{4}{5}+\frac{\left(2x+7\right)^2}{5\left(x^2+2x+6\right)}\ge-\frac{4}{5}\)
=> min A = -4/5 <=> 2x + 7 = 0 <=> x = -7/2
Vậy...
rút gọn biểu thức
a)A= (2x - 3)^2 - (2x + 3)^2
b)B= (x +1)^2 -2 (2x-1) (1+ x) +4x^2 - 4x + 1
`@` `\text {Ans}`
`\downarrow`
`A= (2x - 3)^2 - (2x + 3)^2`
`= [(2x - 3) - (2x + 3)]*[(2x - 3) + (2x + 3)]`
`= (2x - 3 - 2x - 3) * (2x - 3 + 2x + 3)`
`= -6 * 4x`
`= -24x`
`A=(2x-3)^2-(2x+3)^2`
`A=(2x-3-2x-3)(2x-3+2x+3)`
`A=-6.4x=-24x`
b: B=(x+1)^2-2(2x-1)(x+1)+4x^2-4x+1
=(x+1)^2-2(2x-1)(x+1)+(2x-1)^2
=(x+1-2x+1)^2
=(-x+2)^2=x^2-4x+4
Tìm giá trị nhỏ nhất của các biểu thức
a. A = 4x2 + 4x + 11
b. B = (x - 1) (x + 2) (x + 3) (x + 6)
c. C = x2 - 2x + y2 - 4y + 7