Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thơ Anh
Xem chi tiết
Nguyễn Việt Lâm
26 tháng 12 2020 lúc 20:18

\(\Leftrightarrow\left(x+y\right)^3-3xy\left(x+y\right)+\left(x+y\right)^3+30xy=2000\)

\(\Leftrightarrow2\left[\left(x+y\right)^3-1000\right]-3xy\left(x+y-10\right)=0\)

\(\Leftrightarrow2\left(x+y-10\right)\left[\left(x+y\right)^2-10\left(x+y\right)+100\right]-3xy\left(x+y-10\right)=0\)

\(\Leftrightarrow\left(x+y-10\right)\left[2\left(x+y\right)^2-20\left(x+y\right)+200-3xy\right]=0\)

\(\Leftrightarrow x+y=10\)

Do:

\(2\left(x+y\right)^2-20\left(x+y\right)+200-3xy\)

\(=\left(x+y-10\right)^2+\left(x+y\right)^2-3xy+100\)

\(=\left(x+y-10\right)^2+\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+100>0\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
28 tháng 9 2017 lúc 8:39

Rút y=1-x có 

 

Chọn đáp án D.

Game Good
Xem chi tiết
PN Linh
10 tháng 1 2021 lúc 12:39

A=(x+y)3 - 3xy(x+y)+3x2y2

=8-6xy+3x2y2

=3(x2y2-2xy+1)+5

=3(xy+1)2+5 ≥5

dấu = xảy ra ⇔ xy=1 ⇒ x=y=1

Nguyễn Thanh Quân lớp 7/...
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 8 2023 lúc 10:42

10:

Vì n là số lẻ nên n=2k-1

Số số hạng là (2k-1-1):2+1=k(số)

Tổng là (2k-1+1)*k/2=2k*k/2=k^2 là số chính phương

11: 

n^3-n^2+2n+7 chia hết cho n^2+1

=>n^3+n-n^2-1+n+8 chia hết cho n^2+1

=>n+8 chia hết cho n^2+1

=>n^2-64 chia hết cho n^2+1

=>n^2+1-65 chia hết cho n^2+1

=>n^2+1 thuộc {1;5;13;65}

=>\(n\in\left\{0;2;-2;2\sqrt{3};-2\sqrt{3};8;-8\right\}\)

chuche
Xem chi tiết
Minh Hồng
25 tháng 10 2021 lúc 21:40

:V lớp 6 mới đúng

Errot sans404
26 tháng 10 2021 lúc 13:42

đùa à?????????????????????????

Chu Diệu Linh
26 tháng 10 2021 lúc 17:17

Lớp 6 hả???

BÍCH THẢO
Xem chi tiết

Bài 5:

Ta có: \(S=\frac{1}{2^2}-\frac{1}{2^4}+\frac{1}{2^6}-\cdots+\frac{1}{2^{2002}}-\frac{1}{2^{2004}}\)

=>\(4S=1-\frac{1}{2^2}+\frac{1}{2^4}-\frac{1}{2^6}+\cdots+\frac{1}{2^{2000}}-\frac{1}{2^{2002}}\)

=>\(4S+S=1-\frac{1}{2^2}+\frac{1}{2^4}-\frac{1}{2^6}+\cdots+\frac{1}{2^{2000}}-\frac{1}{2^{2002}}+\frac{1}{2^2}-\frac{1}{2^4}+\cdots+\frac{1}{2^{2002}}-\frac{1}{2^{2004}}\)

=>\(5S=1-\frac{1}{2^{2004}}<1\)

=>\(S<\frac15\)

=>S<0,2

Bài 3: Sửa đề: x,y nguyên

c: x+y+9=xy-7

=>xy-7-x-y-9=0

=>xy-x-y-16=0

=>x(y-1)-y+1-17=0

=>(x-1)(y-1)=17

=>(x-1;y-1)∈{(1;17);(17;1);(-1;-17);(-17;-1)}

=>(x;y)∈{(2;18);(18;2);(0;-16);(-16;0)}

b:

Ta có: \(x^3y=xy^3+1997\)

=>\(x^3y-xy^3=1997\)

=>\(xy\left(x^2-y^2\right)=1997\)

=>xy(x-y)(x+y)=1997

Đặt A=xy(x-y)(x+y)

TH1: x chẵn; y chẵn

=>xy chẵn

=>xy(x-y)(x+y)⋮2

=>A⋮2(1)

TH2: x chẵn, y lẻ

=>xy chẵn

=>xy(x-y)(x+y)⋮2

=>A⋮2(2)

TH3: x lẻ; y chẵn

=>xy chẵn

=>A=xy(x-y)(x+y)⋮2(3)

TH4: x lẻ; y lẻ

=>x+y chẵn

=>(x+y)(x-y)xy⋮2

=>A⋮2(4)

Từ (1),(2),(3),(4) suy ra A⋮2

mà A=1997

và 1997 không chia hết cho 2

nên (x;y)∈∅

BÍCH THẢO
Xem chi tiết
Nguyễn Bảo Long
5 tháng 9 2023 lúc 19:55

ck giúp mình với

 

Bài toán 3

a. 25 - y^2 = 8(x - 2009)

Ta có thể viết lại như sau:

y^2 - 8(x - 2009) + 25 = 0

Đây là phương trình bậc hai với hệ số thực.

Ta có thể giải phương trình này như sau:

y = (8x - 1607 ± √(8x - 1607)^2 - 4 * 1 * 25) / 2 y = (4x - 803 ± √(4x - 803)^2 - 200) / 2 y = 2x - 401 ± √(2x - 401)^2 - 100

Ta thấy rằng nghiệm của phương trình này là xấp xỉ 2009 và -2009.

Tuy nhiên, trong bài toán, x và y là số tự nhiên.

Vậy, nghiệm của phương trình này là x = 2009 và y = 0.

b. x^3 y = x y^3 + 1997

Ta có thể viết lại như sau:

x^3 y - x y^3 = 1997 x y (x^2 - y^2) = 1997 x y (x - y)(x + y) = 1997

Ta có thể thấy rằng x và y phải có giá trị đối nhau.

Vậy, nghiệm của phương trình này là x = y = 1997/2 = 998,5.

Tuy nhiên, trong bài toán, x và y là số tự nhiên.

Vậy, nghiệm của phương trình này là x = y = 998.

c. x + y + 9 = xy - 7

Ta có thể viết lại như sau:

x - xy + y + 16 = 0

Đây là phương trình bậc hai với hệ số thực.

Ta có thể giải phương trình này như sau:

x = (xy - 16 ± √(xy - 16)^2 - 4 * 1 * 16) / 2 x = (y - 4 ± √(y - 4)^2 - 64) / 2 x = y - 4 ± √(y - 4)^2 - 32

Ta thấy rằng nghiệm của phương trình này là xấp xỉ 8 và -8.

Tuy nhiên, trong bài toán, x và y là số tự nhiên.

Vậy, nghiệm của phương trình này là x = 8 và y = 12.

Bài toán 4

Ta có thể chứng minh bằng quy nạp.

Cơ sở

Khi n = 2, ta có:

x1.x2 + x2.x3 = 0

Vậy, x1.x2 + x2.x3 + ...+ xn.x1 = 0 khi n = 2.

Bước đệm

Giả sử rằng khi n = k, ta có:

x1.x2 + x2.x3 + ...+ xn.x1 = 0

Bước kết luận

Xét số tự nhiên n = k + 1.

Ta có:

x1.x2 + x2.x3 + ...+ xn.x1 = x1.x2 + x2.x3 + ...+ xn.x1 + xn.x1

Theo giả thuyết, ta có:

x1.x2 + x2.x3 + ...+ xn.x1 = 0

Vậy, xn.x1 = -(x1.x2 + x2.x3 + ...+ xn.x1) = 0.

Như vậy, ta có:

x1.x2 + x2.x3 + ...+ xn.x1   shareGoogle it
kinzy xinh đẹp love all...
Xem chi tiết
Phong Thần
22 tháng 4 2021 lúc 20:09

Bài 1: Ta có 200920 = (20092)10 = (2009.2009)10

                    2009200910 = (10001.2009)10

Mà 2009 < 10001 ➩ (2009.2009)10 < (10001.2009)10

Vậy 200920 < 2009200910

Nguyễn Đình Nhật Long
22 tháng 4 2021 lúc 23:06

Bai 3:

Theo giả thiết suy ra các tích x1x2 , x2x3 , ...., xnx1 chỉ nhận một trong hai giá trị là 1 và -1

Do đó x1x2 + x2x3 +...+ xnx1 = 0 <=> n = 2m

=> Đồng thời có m số hạng bằng 1 và m số hạng bằng -1

Nhận thấy : (x1x2)(x2x3)...(xnx1) = x12x22...xn2 = 1

=> Số các số hạng bằng -1 phải là số chẵn

=> m = 2k

Suy ra n = 2m = 2.2k = 4k

=> n chia hết cho 4

Nguyễn Đình Nhật Long
22 tháng 4 2021 lúc 23:11

bai 2:

25−y²=8(x−2009)

⇒25−y²=8x−16072

⇒8x=25−y²−16072

⇒8x=25−16072−y²

⇒8x=−16047−y²

8×−16047−y²8=−16047−y²

⇒−16047−y²=−16047−y²

⇒y có vô giá trị nhé (y∈R)

Vậy 

Nguyễn Hà Phương
Xem chi tiết