Tính 4x(x + 5) − 9x\(^2\)
A.−5x\(^2\) + 20x
B. 5x\(^2\) + 7x
C. −5x\(^2\) + 5x
D. 4x\(^2\) − 29x
Tính
a)9x⁶:3x³
b)25x⁷:(-5x²)
c)(3x⁵-6x³+9x²):(3x²)
d)(4x²+5x-6):(x+2)
Bài 4: Cho hai đa thức:
P(x)= \(x^5-2x^2+7x^4-9x^3-x+2x^2-5x^4\)
Q(x)= \(5x^4-x^5+4x^2-6+9x^3-8+x^5\)
Tính M(\(\dfrac{1}{2}\))
Tìm gtnn
a)x^2-4x+5 b)2x^2-4x-6
c)3x^2+9x+6. d)5x^2+5x+1
a. A= \(x^2-4x+5=\left(x-2\right)^2+1\ge1\)
Vậy minA=1<=> x=2
b. B=\(2x^2-4x-6=\left(x\sqrt{2}-\sqrt{2}\right)^2-8\ge-8\)
Vậy minB=-8 <=> x=1
c. C=\(3x^2+9x+6=\left(\sqrt{3}x+\frac{\sqrt{3}}{2}\right)^2-\frac{3}{4}\ge\frac{-3}{4}\)
Vậy minC=-3/4 <=> x=-3/2
d. D=\(5x^2+5x+1=\left(\sqrt{5}x+\frac{\sqrt{5}}{2}\right)^2-\frac{1}{4}\ge\frac{-1}{4}\)
Vậy minD=-1/4 <=> x=-1/2
giúp mình nhe :>
A)3x^2-x(3x-5)=9
B)5x^2+9x-2=0
C)x/x+5-x-2/x=2x-1/x^2+5x
D)4(5-3x)=5x-5
E)2x^2-11x+14=0
F)3/2x+3-5/x(2x+3)=4/x
A) 3x² - x(3x - 5) = 9
3x² - 3x² + 5x = 9
5x = 9
x = 9/5
--------------------
B) 5x² + 9x - 2 = 0
5x² + 10x - x - 2 = 0
(5x² + 10x) - (x + 2) = 0
5x(x + 2) - (x + 2) = 0
(x + 2)(5x - 1) = 0
x + 2 = 0 hoặc 5x - 1 = 0
*) x + 2 = 0
x = -2
*) 5x - 1 = 0
5x = 1
x = 1/5
Vậy x = -2; x = 1/5
---------------------
D) 4(5 - 3x) = 5x - 5
20 - 12x = 5x - 5
-12x - 5x = -5 - 20
-17x = -25
x = 25/17
--------------------
E) 2x² - 11x + 14 = 0
2x² - 4x - 7x + 14 = 0
(2x² - 4x) - (7x - 14) = 0
2x(x - 2) - 7(x - 2) = 0
(x - 2)(2x - 7) = 0
x - 2 = 0 hoặc 2x - 7 = 0
*) x - 2 = 0
x = 2
*) 2x - 7 = 0
2x = 7
x = 7/2
Vậy x = 2; x = 7/2
Câu C và F ghi đề bằng công thức đúng lại em
c: =>x^2-(x-2)(x+5)=2x-1
=>x^2-x^2-5x+2x+10=2x-1
=>3x+10=2x-1
=>x=-11
f: =>3x-5=4(2x+3)
=>8x+12=3x-5
=>5x=-17
=>x=-17/5
tìm A. a) A(x-5)/x^2-4x-5=3x^2+9x/x^2+4x+3
b) x^2+x-6/A(x+3)=(5x-1)(x-2)/5x^3-x^2+15x-3
c)x^2-25/2x^2+7x-15=(x-5)A/2x^2+x-6
mong mọi ng làm giúp ạ
b: \(\Leftrightarrow\dfrac{x-2}{A}=\dfrac{\left(5x-1\right)\left(x-2\right)}{x^2\left(5x-1\right)+3\left(5x-1\right)}=\dfrac{x-2}{x^2+3}\)
hay \(A=x^2+3\)
Bài 4: Cho hai đa thức:
P(x)= \(x^5-2x^2+7x^4-9x^3-x+2x^2-5x^4\)
Q(x)= \(5x^4-x^5+4x^2-6+9x^3-8+x^5\)
c) Tính M(x)=P(x) + Q(x)
d) Tính M(2),M(-2),M(\(\dfrac{1}{2}\))
a: \(P\left(x\right)=x^5+2x^4-9x^3-x\)
\(Q\left(x\right)=5x^4+9x^3+4x^2-14\)
c:: \(M\left(x\right)=P\left(x\right)+Q\left(x\right)=x^5+7x^4+4x^2-x-14\)
d: \(M\left(2\right)=32+7\cdot16+4\cdot4-2-14=144\)
\(M\left(-2\right)=-32+7\cdot16+4\cdot4+2-14=84\)
Bài 2: Tìm x, biết:
a/ 12x(x – 5) – 3x(4x - 10) = 120
b/ 9x(x + 4) – 5x(3x + 2) = 112 - 2x(3x + 1)
c/ 3x(1 – x) - 5x(3x + 7) = 154 + 9x(5 – 2x)
$ a/ 12x(x – 5) – 3x(4x - 10) = 120$
`<=>12x^2-60x-12x^2+30x=120`
`<=>-30x=120`
`<=>x=-4`
Vậy `x=-4`
$b/ 9x(x + 4) – 5x(3x + 2) = 112 - 2x(3x + 1)$
`<=>9x^2+36x-15x^2-10x=112-6x^2-2x`
`<=>-6x^2+26x=112-6x^2-2x`
`<=>28x=112`
`<=>x=4`
Vậy `x=4`
$c/ 3x(1 – x) - 5x(3x + 7) = 154 + 9x(5 – 2x)$
`<=>3x-3x^2-15x^2-35x=154+45x-18x^2`
`<=>-32x-18x^2=154+45x-18x^2`
`<=>77x=-154`
`<=>x=-2`
Vậy `x=-2`
Tìm x:
a,(x+2).(x+3)-(x-2).(x+5)=6
b,3.(2x-1).(3x-1)-(2x-3).(9x-1)=0
c,5x-3{4x-2[4x-3.(5x-2)]}=182
a) (x + 2)(x + 3) - (x - 2)(x + 5) = 6
<=> x2 + 3x + 2x + 6 - x2 - 5x + 2x + 10 = 6
<=> 2x + 16 = 6
<=> 2x = -10
<=> x = -5
Vậy x = {-5}
Còn b với c mình đang tính :D
Tìm GTNN
\(A=x^2-2x+5\)
\(B=4x^2+4x+3\)
\(C=9x^2-6x+7\)
D\(=5x^2+3x+8\)
`A=x^2-2x+5`
`=x^2-2x+1+4`
`=(x-1)^2+4>=4`
Dấu "=" `<=>x=1`
`B=4x^2+4x+3`
`=4x^2+4x+1+2`
`=(2x+1)^2+2>=2`
Dấu "=" xảy ra khi `x=-1/2`
`C=9x^2-6x+7`
`=9x^2-6x+1+6`
`=(3x-1)^2+6>=6`
Dấu '=' xảy ra khi `x=1/3`
`D=5x^2+3x+8`
`=5(x^2+3/5x)+8`
`=5(x^2+3/5x+9/100-9/100)+8`
`=5(x+3/10)^2+151/20>=151/20`
Dấu "=" xảy ra khi `x=-3/10`
\(A=x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4\)
Ta có: \(\left(x-1\right)^2\ge0\Rightarrow\left(x-1\right)^2+4\ge4\Rightarrow A_{min}=4\) khi \(x=1\)
\(B=4x^2+4x+3=4x^2+4x+1+2=\left(2x+1\right)^2+2\)
Ta có: \(\left(2x+1\right)^2\ge0\Rightarrow\left(2x+1\right)^2+2\ge2\Rightarrow B_{min}=2\) khi \(x=-\dfrac{1}{2}\)
\(C=9x^2-6x+7=9x^2-6x+1+6=\left(3x-1\right)^2+6\)
Ta có: \(\left(3x-1\right)^2\ge0\Rightarrow\left(3x-1\right)^2+6\ge6\Rightarrow C_{min}=6\) khi \(x=\dfrac{1}{3}\)
\(D=5x^2+3x+8\Rightarrow5\left(x^2+2.x.\dfrac{3}{10}+\dfrac{9}{100}\right)+\dfrac{151}{20}=5\left(x+\dfrac{3}{10}\right)^2+\dfrac{151}{20}\)
Ta có: \(5\left(x+\dfrac{3}{10}\right)^2\ge0\Rightarrow5\left(x+\dfrac{3}{10}\right)^2+\dfrac{151}{20}\ge\dfrac{151}{20}\)
\(\Rightarrow D_{min}=\dfrac{151}{20}\) khi \(x=-\dfrac{3}{10}\)
- A = (x-1)2 + 4 \(\ge4\)
Dấu "=" <=> x = 1
- B = (2x+1)2 +2 \(\ge2\)
Dấu "=" xảy ra <=> x = \(\dfrac{-1}{2}\)
- C = (3x - 1)2 + 6 \(\ge6\)
Dấu "=" <=> x = \(\dfrac{1}{3}\)
- D = \(5\left(x^2+\dfrac{3}{5}x+\dfrac{9}{100}\right)+\dfrac{151}{20}=5\left(x+\dfrac{3}{10}\right)^2+\dfrac{151}{20}\ge\dfrac{151}{20}\)
Dấu "=" <=> x = \(\dfrac{-3}{10}\)