sinx+cos2x+2cos^2x=0
giải các phương trình sau:
2cos2x +7sin22x = 0
2cosx(1-sinx) + \(\sqrt{3}\)cos2x =0
2cos2x+7sin22x=0
Bạn áp dung CT: sina=2sina.cosa là ra
pt<=>2cos2x+7.(2.sinx.cosx)2=0
<=>2cos2x+7.4.sin2x.cos2x=0
<=>2cos2x+28sin2x.cos2x=0
<=>2cos2x.(1+14sin2x)=0
<=>\(\left[{}\begin{matrix}cosx=0\\sin^2x=\dfrac{-1}{14}\end{matrix}\right.\)\(\left[{}\begin{matrix}x=\dfrac{\Pi}{2}+k\Pi\\vn\end{matrix}\right.\) (k thuộc Z)
2cosx(1-sinx)+\(\sqrt{3}\)cos2x=0
<=>2cosx-2sinx.cosx+\(\sqrt{3}\)cos2x=0
<=>2cosx-sin2x+\(\sqrt{3}\)cos2x=0 (2sinx.cosx=sin2x)
<=>2cosx=sin2x-\(\sqrt{3}\)cos2x (*)
Tới đây bạn xem sách giáo khoa trang 35 nhé, người ta hướng dẫn kĩ lắm rồi đấy hihi!
(*)<=>2cosx=2sin(2x-\(\dfrac{\Pi}{3}\))
<=>cosx=sin(2x-\(\dfrac{\Pi}{3}\))
Tới đây bạn áp dung công thức Phụ Chéo (hình như cuối năm lớp 10 học rồi):
TỔng quát: cosx=sin(\(\dfrac{\Pi}{2}\)-x)
pt<=>sin(\(\dfrac{\Pi}{2}\)-x)=sin(2x-\(\dfrac{\Pi}{3}\))
<=>\(\left[{}\begin{matrix}\dfrac{\Pi}{2}-x=2x-\dfrac{\Pi}{3}\\\dfrac{\Pi}{2}-x=\Pi-2x+\dfrac{\Pi}{3}\end{matrix}\right.\)
<=>\(\left[{}\begin{matrix}x=\dfrac{5\Pi}{18}+\dfrac{k2\Pi}{3}\\x=\dfrac{5\Pi}{6}+k2\Pi\end{matrix}\right.\)(k thuộc Z)
Chúc bạn học tốt!
Có gì bạn vào tìm kiếm, gõ"0941487990" kết bạn facebook, inbox có gì giúp dc thì mình giúp cho!
Giải phương trình:
3sin2x + 2cos2x = 3
a) cos2x - sinx + cosx = 0
b) 2cos³x + sinx + cos2 = 0
a: \(\sqrt{3^2+2^2}=\sqrt{13}\)
Chia hai vế cho căn 13, ta được:
\(\dfrac{3}{\sqrt{13}}\cdot\sin2x+\dfrac{2}{\sqrt{13}}\cdot\cos2x=\dfrac{3}{\sqrt{13}}\)
Đặt \(\cos a=\dfrac{3}{\sqrt{13}}\)
Ta được phương trình: \(\sin\left(2x+a\right)=\cos a=\sin\left(\dfrac{\Pi}{2}-a\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+a=\dfrac{\Pi}{2}-a+k2\Pi\\2x+a=\dfrac{\Pi}{2}+a+k2\Pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\left(\dfrac{\Pi}{2}-2a+k2\Pi\right)\\x=\dfrac{\Pi}{4}+k\Pi\end{matrix}\right.\)
b: \(\Leftrightarrow cos^2x-sin^2x+cosx-sinx=0\)
\(\Leftrightarrow\left(cosx-sinx\right)\left(cosx+sinx+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\cos x=\cos\left(\dfrac{\Pi}{2}-x\right)\\\sin\left(x-\dfrac{\Pi}{4}\right)=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\Pi}{2}-x+k2\Pi\\x=-\dfrac{\Pi}{2}+x+k2\Pi\\x-\dfrac{\Pi}{4}=-\dfrac{\Pi}{2}+k2\Pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\Pi}{4}+k\Pi\\x=-\dfrac{\Pi}{4}+k2\Pi\end{matrix}\right.\)
Chứng minh rằng :
\(\frac{1-cos2x}{2\left(1+cosx\right)}-\frac{2cos^2x-1}{sinx\left(1-cotx\right)}=1+sinx\)
Recall NVL.
\(\frac{1-cos2x}{2\left(1+cosx\right)}-\frac{2cos^2x-1}{sinx\left(1-cotx\right)}=\frac{1-\left(2cos^2x-1\right)}{2\left(1+cosx\right)}-\frac{cos^2x-sin^2x}{sinx-cosx}\)
\(=\frac{1-cos^2x}{1+cosx}+\frac{\left(sinx-cosx\right)\left(sinx+cosx\right)}{sinx-cosx}=\frac{\left(1-cosx\right)\left(1+cosx\right)}{1+cosx}+sinx+cosx\)
\(=1-cosx+sinx+cosx=1+sinx\)
giải phương trình đối với sin x và cosx
1) 3sinx-4cosx=5
2) \(\sqrt{3}cos2x+sin2x+2sin\left(2x-\frac{\pi}{6}\right)=2\sqrt{2}\)
3) \(cosx+\sqrt{3}sinx+2cos\left(2x+\frac{\pi}{3}\right)=0\)
4) \(2cos\left(2x+\frac{\pi}{6}\right)+4sinxcosx-1=0\)
5) \(\sqrt{3}cos5x-2sin3x.cos2x-sinx=0\)
Giai phương trình bậc hai theo sin hoặc cos có biến đổi đơn giản như :
a/ \(sin^2x+3cosx-3=0\)
b/ \(2cos^2x+sinx-1=0\)
c/ \(cos2x-5cosx+2=0\)
d/ \(cos2x+2sinx-2=0\)
a/ \(1-cos^2x+3cosx-3=0\)
\(\Leftrightarrow-cos^2x+3cosx-2=0\Rightarrow\left[{}\begin{matrix}cosx=1\\cosx=2\left(l\right)\end{matrix}\right.\)
\(\Rightarrow x=k2\pi\)
b/ \(2\left(1-sin^2x\right)+sinx-1=0\)
\(\Leftrightarrow-2sin^2x+sinx+1=0\)
\(\Rightarrow\left[{}\begin{matrix}sinx=1\\sinx=-\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k2\pi\\x=-\frac{\pi}{6}+k2\pi\\x=\frac{7\pi}{6}+k2\pi\end{matrix}\right.\)
c/ \(2cos^2x-1-5cosx+2=0\)
\(\Leftrightarrow2cos^2x-5cosx+1=0\)
Nghiệm rất xấu, bạn coi lại đề
d/ \(1-2sin^2x+2sinx-2=0\)
\(\Leftrightarrow-2sin^2x+2sinx-1=0\)
Phương trình vô nghiệm
1) cosx\(^2\)+sinx=0
2) 2cos\(^2\)x-cos2x+cosx=0
3) sin\(^2\)x-3cos2x-2=0
4) tanx+\(\dfrac{2}{cotx}\)=0
3.
\(\dfrac{1}{2}-\dfrac{1}{2}cos2x-3cos2x-2=0\)
\(\Leftrightarrow-7cos2x-3=0\)
\(\Rightarrow cos2x=-\dfrac{3}{7}\)
\(\Rightarrow2x=\pm arccos\left(-\dfrac{3}{7}\right)+k2\pi\)
\(\Rightarrow x=\pm\dfrac{1}{2}arccos\left(-\dfrac{3}{7}\right)+k\pi\)
4.
ĐKXĐ: \(x\ne\dfrac{k\pi}{2}\)
\(tanx+2tanx=0\)
\(\Rightarrow3tanx=0\)
\(\Rightarrow tanx=0\)
\(\Rightarrow x=k\pi\) (loại do ĐKXĐ)
Vậy pt đã cho vô nghiệm
1.
\(\Leftrightarrow1-sin^2x+sinx=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=\dfrac{1+\sqrt{5}}{2}>1\left(loại\right)\\sinx=\dfrac{1-\sqrt{5}}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=arcsin\left(\dfrac{1-\sqrt{5}}{2}\right)+k2\pi\\x=\pi-arcsin\left(\dfrac{1-\sqrt{5}}{2}\right)+k2\pi\end{matrix}\right.\) (\(k\in Z\))
2.
\(2cos^2x-\left(2cos^2x-1\right)+cosx=0\)
\(\Leftrightarrow cosx+1=0\)
\(\Leftrightarrow cosx=-1\)
\(\Leftrightarrow x=\pi+k2\pi\) (\(k\in Z\))
giải các pt
a) \(\left(2sin^2x-1\right)tan^22x+3\left(2cos^2x-1\right)=0\)
b) \(tanx+tan2x=\frac{2sin3x}{sin2x}\)
c) \(1+sinx.cos2x=sinx+cos2x\)
d) \(tanx=1-cos2x\)
a/
DKXD: ...
\(\Leftrightarrow-cos2x.tan^22x+3.cos2x=0\)
\(\Leftrightarrow cos2x\left(3-tan^22x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\tan^22x=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=\frac{\pi}{2}+k\pi\\tan2x=\sqrt{3}\\tan2x=-\sqrt{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+\frac{k\pi}{2}\\2x=\frac{\pi}{3}+k\pi\\2x=-\frac{\pi}{3}+k\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+\frac{k\pi}{2}\\x=\pm\frac{\pi}{6}+\frac{k\pi}{2}\end{matrix}\right.\)
b/
DKXD: ...
\(\Leftrightarrow\frac{sinx}{cosx}+\frac{sin2x}{cos2x}-\frac{2sin3x}{sin2x}=0\)
\(\Leftrightarrow\frac{sinx.cos2x+sin2x.cosx}{cosx.cos2x}-\frac{2sin3x}{sin2x}=0\)
\(\Leftrightarrow\frac{sin\left(2x+x\right)}{cosx.cos2x}-\frac{2sin3x}{sin2x}=0\)
\(\Leftrightarrow\frac{sin3x}{cosx.cos2x}-\frac{2sin3x}{sin2x}=0\)
\(\Leftrightarrow sin3x\left(\frac{1}{cosx.cos2x}-\frac{2}{sin2x}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin3x=0\left(1\right)\\2cosx.cos2x=sin2x\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow3sinx-4sin^3x=0\) (tìm nghiệm thẳng bằng \(3x=k\pi\) rồi dựa vào đường tròn lượng giác loại nghiệm cũng được)
\(\Leftrightarrow sinx\left(3-4sin^2x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\left(l\right)\\sinx=\pm\frac{\sqrt{3}}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\pm\frac{\pi}{3}+k2\pi\\x=\frac{2\pi}{3}+k2\pi\\x=\frac{4\pi}{3}+k2\pi\end{matrix}\right.\)
\(\left(2\right)\Leftrightarrow2cosx.cos2x=2sinx.cosx\)
\(\Leftrightarrow2cosx\left(cos2x-sinx\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\left(l\right)\\cos2x=sinx=cos\left(\frac{\pi}{2}-x\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=\frac{\pi}{2}-x+k2\pi\\2x=x-\frac{\pi}{2}+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+\frac{k2\pi}{3}\\x=-\frac{\pi}{2}+k2\pi\left(l\right)\end{matrix}\right.\)
c/
\(\Leftrightarrow sinx.cos2x-sinx+1-cos2x=0\)
\(\Leftrightarrow sinx\left(cos2x-1\right)-\left(cos2x-1\right)=0\)
\(\Leftrightarrow\left(sinx-1\right)\left(cos2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=1\\cos2x=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k2\pi\\2x=k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k2\pi\\x=k\pi\end{matrix}\right.\)
Giải phương trình sau
1.\(cos2x-\sqrt{3}sin2x=\sqrt{2}\)
2.\(4sin^2\frac{x}{2}-3\sqrt{3}sinx-2cos^2\frac{x}{2}=4\)
3. \(2\left(sinx+cosx\right)=4sinxcosx+1\)
4. \(cosx-sinx-2sin2x-1=0\)
\(5.\sqrt{3}sin2x+cos2x=2sinx\)
6. \(9sin^2x-5cos^2x-5sinx+4=0\)
7.\(cos^2x-\sqrt{3}sin2x=1+sinx\)
8.\(\frac{3}{cos^2x}=3+2tan^2x\)
1.
\(\frac{1}{2}cos2x-\frac{\sqrt{3}}{2}sin2x=\frac{\sqrt{2}}{2}\)
\(\Leftrightarrow cos\left(2x+\frac{\pi}{3}\right)=\frac{\sqrt{2}}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+\frac{\pi}{3}=\frac{\pi}{4}+k2\pi\\2x+\frac{\pi}{3}=-\frac{\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{24}+k\pi\\x=-\frac{7\pi}{24}+k\pi\end{matrix}\right.\)
2.
\(2\left(1-cosx\right)-3\sqrt{3}sinx-\left(1+cosx\right)=4\)
\(\Leftrightarrow cosx+\sqrt{3}sinx=-1\)
\(\Leftrightarrow\frac{1}{2}cosx+\frac{\sqrt{3}}{2}sinx=-\frac{1}{2}\)
\(\Leftrightarrow cos\left(x-\frac{\pi}{3}\right)=-\frac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{\pi}{3}=\frac{2\pi}{3}+k2\pi\\x-\frac{\pi}{3}=-\frac{2\pi}{3}+k2\pi\end{matrix}\right.\) \(\Leftrightarrow...\)
3.
\(4sinx.cosx-2sinx+1-2cosx=0\)
\(\Leftrightarrow2sinx\left(2cosx-1\right)-\left(2cosx-1\right)=0\)
\(\Leftrightarrow\left(2sinx-1\right)\left(2cosx-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=\frac{1}{2}\\cosx=\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\\x=\pm\frac{\pi}{3}+k2\pi\end{matrix}\right.\)
4.
\(cosx-sinx=t\Rightarrow\left[{}\begin{matrix}\left|t\right|\le\sqrt{2}\\-4sinx.cosx=2t^2-2\end{matrix}\right.\)
Pt trở thành: \(t+2t^2-2-1=0\Leftrightarrow2t^2+t-3=0\Rightarrow\left[{}\begin{matrix}t=1\\t=-\frac{3}{2}< -\sqrt{2}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{2}cos\left(x+\frac{\pi}{4}\right)=-1\)
\(\Leftrightarrow cos\left(x+\frac{\pi}{4}\right)=-\frac{\sqrt{2}}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{\pi}{4}=\frac{3\pi}{4}+k2\pi\\x+\frac{\pi}{4}=-\frac{3\pi}{4}+k2\pi\end{matrix}\right.\) \(\Leftrightarrow...\)
5.
\(\frac{\sqrt{3}}{2}sin2x+\frac{1}{2}cos2x=sinx\)
\(\Leftrightarrow sin\left(2x+\frac{\pi}{6}\right)=sinx\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+\frac{\pi}{6}=x+k2\pi\\2x+\frac{\pi}{6}=\pi-x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow...\)
6.
\(9sin^2x-5\left(1-sin^2x\right)-5sinx+4=0\)
\(\Leftrightarrow14sin^2x-5sinx-1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=\frac{1}{2}\\sinx=-\frac{1}{7}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\\x=arcsin\left(-\frac{1}{7}\right)+k2\pi\\x=\pi-arcsin\left(-\frac{1}{7}\right)+k2\pi\end{matrix}\right.\)
Phân tích thành tích
1,A= 1+ sinx+ cosx+ sin2x
2, B= 1+ 2cos 2x- sin2x
3, C= 2(sinx - cosx) - cos2x