Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Luyri Vũ
Xem chi tiết
Phạm Thị Thu Trang
Xem chi tiết
alibaba nguyễn
27 tháng 8 2016 lúc 12:07

x0= 8 - ( \(2\sqrt{2+\sqrt{3}}\)\(2\sqrt{6-3\sqrt{3}}\)) (1)

Ta có (  \(2\sqrt{2+\sqrt{3}}\)\(2\sqrt{6-3\sqrt{3}}\))2 = 32

Do đó x02 = 8 - \(\sqrt{32}\)(2)

PT <=> (x- 8)2 - 32 = 0 (3)

Thế (2) vào (3) thì đúng

Vậy x0 là nghiệm của PT

Nguyễn Việt Hoàng
Xem chi tiết
๖²⁴ʱ๖ۣۜTɦủү❄吻༉
11 tháng 8 2020 lúc 13:05

Đặt \(x^2=t\left(t\ge0\right)\)

\(\Leftrightarrow t^2-16t+32=0\)

\(\Delta=\left(-16\right)^2-4.32=256-128=128>0\)

\(t_1=\frac{16-\sqrt{128}}{2}=8-4\sqrt{2};t_2=\frac{16+\sqrt{128}}{2}=8+4\sqrt{2}\)

Theo bài ra ta có : 

\(x_0=\sqrt{2+\sqrt{2+\sqrt{3}}}-\sqrt{6-3\sqrt{2+\sqrt{3}}}\)

\(=\sqrt{2+\sqrt{3}}-\sqrt{3\left(2-\sqrt{2+\sqrt{3}}\right)}\)

tịt lun, cái pt căn này chill quá 

Khách vãng lai đã xóa
Nguyễn Việt Hoàng
11 tháng 8 2020 lúc 13:13

 ๖²⁴ʱ๖ۣۜTɦủү❄吻༉ Mơn Bạn nha .

P/s : làm nháp thử mn sửa giúp nha ( thực ra em cũng chả hiểu cái gì cả T_T )

Ta có :

\(\left(x_0\right)^2=8-2\sqrt{2+\sqrt{3}}-2\sqrt{3\left(2-\sqrt{3}\right)}\)

\(\Rightarrow\left(\frac{8-\left(x_0\right)^2}{2}\right)^2=2+\sqrt{3}+3\left(2-\sqrt{3}\right)+2\sqrt{3\left(4-3\right)}=8\)

\(\Rightarrow64-16\left(x_0\right)^2+\left(x_0\right)^4=32\)

\(\Rightarrow\left(x_0\right)^4-16\left(x_0\right)^2+32=0\left(đpcm\right)\)

Khách vãng lai đã xóa
Tran Le Khanh Linh
11 tháng 8 2020 lúc 16:51

ta có \(8-2\sqrt{3}+2\sqrt{3}=\left(2\cdot\sqrt{2}\right)^2\)

\(\Leftrightarrow\left(2+\sqrt{3}\right)+\left(6-3\sqrt{3}\right)+2\sqrt{\left(2+\sqrt{3}\right)\left(6-3\sqrt{3}\right)}=\left(2\cdot\sqrt{2}\right)^2\)

\(\Leftrightarrow\left(\sqrt{2+\sqrt{3}}+\sqrt{6-3\sqrt{3}}\right)^2=\left(2\cdot\sqrt{2}\right)^2\)

\(\Leftrightarrow\sqrt{2+\sqrt{3}}+\sqrt{6-3\sqrt{3}}=2\sqrt{2}\)

\(\Leftrightarrow8-2\sqrt{2+\sqrt{3}}-2\sqrt{\left(2+\sqrt{2+\sqrt{3}}\right)\left(6-\sqrt{2+\sqrt{3}}\right)}=8-4\sqrt{2}\)

\(\Leftrightarrow\left(\sqrt{2+\sqrt{2+\sqrt{3}}}-\sqrt{6-3\sqrt{2+\sqrt{3}}}\right)^2=8-4\sqrt{2}\)

\(\Leftrightarrow x_0^2=8-4\sqrt{2}\)

\(\Leftrightarrow x_0^2-\left(8-4\sqrt{2}\right)=0\)

\(\Leftrightarrow\left[x_0^2-\left(8-4\sqrt{2}\right)\right]\left[x_0^2-\left(8+4\sqrt{2}\right)\right]=0\)

\(\Leftrightarrow x_0^4-16x_0^2+32=0\)

Khách vãng lai đã xóa
Nguyễn Thị Yến Nga
Xem chi tiết
Lê Thị Thục Hiền
2 tháng 9 2019 lúc 7:51

\(x_0=\sqrt{2+\sqrt{2+\sqrt{3}}}-\sqrt{6-3\sqrt{2+\sqrt{3}}}\)(x0>0)

=> \(\left(x_0\right)^2=2+\sqrt{2+\sqrt{3}}+6-3\sqrt{2+\sqrt{3}}-2\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{6-3\sqrt{2+\sqrt{3}}}\)

<=> \(\left(x_0\right)^2=8-2\sqrt{2+\sqrt{3}}-2\sqrt{\left(2+\sqrt{2+\sqrt{3}}\right)\left(6-3\sqrt{2+\sqrt{3}}\right)}\)

<=> \(\left(x_0\right)^2=8-\sqrt{2}\sqrt{4+2\sqrt{3}}-2\sqrt{12-6\sqrt{2+\sqrt{3}}+6\sqrt{2+\sqrt{3}}-3\left(2+\sqrt{3}\right)}\)

<=> \(\left(x_0\right)^2=8-\sqrt{2}\sqrt{\left(\sqrt{3}+1\right)^2}-2\sqrt{12-6-3\sqrt{3}}=8-\sqrt{2}\left(\sqrt{3}+1\right)-2\sqrt{6-3\sqrt{3}}=8-\sqrt{2}\left(\sqrt{3}+1\right)-\sqrt{2}\sqrt{12-6\sqrt{3}}\)

<=> \(\left(x_0\right)^2=8-\sqrt{6}-\sqrt{2}-\sqrt{2}\sqrt{\left(3-\sqrt{3}\right)^2}=8-\sqrt{6}-\sqrt{2}-\sqrt{2}\left|3-\sqrt{3}\right|=8-\sqrt{6}-\sqrt{2}-\sqrt{2}\left(3-\sqrt{3}\right)\)

<=> \(\left(x_0\right)^2=8-\sqrt{6}-\sqrt{2}-3\sqrt{2}+\sqrt{6}=8-4\sqrt{2}\)

\(x^4-16x^2+32=0\) <=> \(x^4-8x^2+4\sqrt{2}x^2-8x^2+64-32\sqrt{2}-4\sqrt{2}x^2+32\sqrt{2}-32=0\)

<=> \(x^2\left(x^2-8+4\sqrt{2}\right)-8\left(x^2-8+4\sqrt{2}\right)-4\sqrt{2}\left(x^2-8+4\sqrt{2}\right)=0\)

<=>\(\left(x^2-8-4\sqrt{2}\right)\left(x^2-8+4\sqrt{2}\right)=0\)

=> \(\left[{}\begin{matrix}\left(x_1\right)^2=8+4\sqrt{2}\\\left(x_2\right)^2=8-4\sqrt{2}\end{matrix}\right.\) (x1,x2>0)

=> \(\left(x_0\right)^2=\left(x_2\right)^2\) <=> \(x_0=x_2\)( x0,x2>0)

Vậy x0 là một nghiệm của pt \(x^4-16x^2+32=0\)

Thái Viết Nam
Xem chi tiết
Akai Haruma
30 tháng 11 2018 lúc 23:52

Lời giải:
Đặt \(\sqrt[3]{-q+\sqrt{q^2+p^3}}=a; \sqrt[3]{-q-\sqrt{q^2+p^3}}=b\) thì $x_0=a+b$

Khi đó:

\(a^3+b^3=-2q\)

\(ab=\sqrt[3]{(-q+\sqrt{q^2+p^3})(-q-\sqrt{q^2+p^3})}=\sqrt[3]{(-q)^2-(q^2+p^3)}=\sqrt[3]{-p^3}=-p\)

Ta có:

\((a+b)^3=a^3+b^3+3ab(a+b)\)

\(\Leftrightarrow x_0^3=-2q+3.(-p)x_0\)

\(\Leftrightarrow x_0^3+3px_0+2q=0\)

Do đó $x_0$ là nghiệm của PT \(x^3+3px+2q=0\)

Ta có đpcm.

Nguyễn Trang
Xem chi tiết
HUỳnh Thị THảo Ngân
23 tháng 2 2016 lúc 12:52

x0+y0+\(\frac{\sqrt{3}}{2}\)=\(\frac{1}{2}\)

Quỳnh Huỳnh
23 tháng 2 2016 lúc 19:24

Nhân pt (1) với căn3 + 1 để ra 2y

Phạm Dương Ngọc Nhi
Xem chi tiết
Julian Edward
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 9 2020 lúc 16:40

\(sin9x-\sqrt{3}cos9x=sin7x-\sqrt{3}cos7x\)

\(\Leftrightarrow\frac{1}{2}sin9x-\frac{\sqrt{3}}{2}cos9x=\frac{1}{2}sin7x-\frac{\sqrt{3}}{2}cos7x\)

\(\Leftrightarrow sin\left(9x-\frac{\pi}{3}\right)=sin\left(7x-\frac{\pi}{3}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}9x-\frac{\pi}{3}=7x-\frac{\pi}{3}+k2\pi\\9x-\frac{\pi}{3}=\frac{4\pi}{3}-7x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\frac{5\pi}{48}+\frac{k\pi}{8}\end{matrix}\right.\)

\(\Rightarrow\) Nghiệm âm lớn nhất \(x=-\frac{\pi}{48}\)

Khách vãng lai đã xóa
Julian Edward
Xem chi tiết
Hoàng Tử Hà
23 tháng 4 2021 lúc 5:15

\(y'=\dfrac{1}{2\sqrt{x-1}}+\dfrac{1}{\sqrt{2x+1}}\)

\(\Rightarrow y'\left(3\right)=\dfrac{1}{2\sqrt{2}}+\dfrac{1}{\sqrt{7}}\Rightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=1\end{matrix}\right.\Rightarrow a+b=\dfrac{3}{2}\)