Giải phương trình nghiệm nguyên.
\(5a^2+9b^2-12ab+8=24\left(2b-a-3\right)\)
giải phương trình nghiệm nguyên
\(4\left(a+b\right)\left(b+c\right)\left(c+a\right)=a^2b^2c^2\)
tìm a và b để phương trình sau có nghiệm
\(\hept{\begin{cases}2ax+3by=4a+9b\\2b^2\left(x-1\right)+3a^2\left(y-2\right)=3a^2+2b^2\end{cases}}\)
\(\left\{{}\begin{matrix}x+y=2\\mx+y=m\end{matrix}\right.\)
a) giải hệ phương trình với m=-2
b)Tìm m để hệ phương trình co nghiệm nguyên
a.
Với \(m=-2\Rightarrow\left\{{}\begin{matrix}x+y=2\\-2x+y=-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=2\\3x=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{4}{3}\\y=2-\dfrac{4}{3}=\dfrac{2}{3}\end{matrix}\right.\)
b.
\(\left\{{}\begin{matrix}x+y=2\\mx+y=m\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+y=2\\\left(m-1\right)x=m-2\end{matrix}\right.\)
Phương trình có nghiệm khi \(m\ne1\)
Khi đó: \(x=\dfrac{m-2}{m-1}=1-\dfrac{1}{m-1}\)
\(x\in Z\Rightarrow\dfrac{1}{m-1}\in Z\Rightarrow m-1=Ư\left(1\right)=\left\{-1;1\right\}\)
\(\Rightarrow m=\left\{0;2\right\}\)
cho phương trình \(x^2-6\left(m-1\right)x+9\left(m-3\right)=0\left(1\right)\)
a, giải phương trình (1) khi m=2
b, tìm các giá trị của m để phương trình (1) có 2 nghiệm phân biệt thoả mãn \(x_1+x_2=2x_1.x_2\)
a. Khi m=2 thì (1) có dạng :
\(x^2-6\left(2-1\right)x+9\left(2-3\right)=0\\ \Leftrightarrow x^2-6x-9=0\\ \Leftrightarrow\left(x-3\right)^2=18\Leftrightarrow x-3=\pm\sqrt{18}\\ \Leftrightarrow x=3\pm3\sqrt{2}\)
Vậy với m=2 thì tập nghiệm của phương trình là \(S=\left\{3\pm3\sqrt{2}\right\}\)
b. Coi (1) là phương trình bậc 2 ẩn x , ta có:
\(\text{Δ}'=\left(-3m+3\right)^2-1\cdot9\left(m-3\right)=9m^2-18m+9-9m+27\\ =9m^2-27m+36=\left(3m-\dfrac{9}{2}\right)^2+\dfrac{63}{4}>0\)
Nên phương trình (1) luôn có 2 nghiệm x1,x2 thỏa mãn:
\(\left\{{}\begin{matrix}x_1+x_2=6\left(m-1\right)\\x_1x_2=9\left(m-3\right)\end{matrix}\right.\left(2\right)\)
Vì
\(x_1+x_2=2x_1x_2\\ \Leftrightarrow6\left(m-1\right)=18\left(m-3\right)\Leftrightarrow m-1=3m-9\\ \Leftrightarrow2m=8\Leftrightarrow m=4\)
Vậy m=4
b) Ta có: \(\text{Δ}=\left[-6\left(m-1\right)\right]^2-4\cdot1\cdot9\left(m-3\right)\)
\(=\left(6m-6\right)^2-36\left(m-3\right)\)
\(=36m^2-72m+36-36m+108\)
\(=36m^2-108m+144\)
\(=\left(6m\right)^2-2\cdot6m\cdot9+81+63\)
\(=\left(6m-9\right)^2+63>0\forall m\)
Suy ra: Phương trình luôn có hai nghiệm phân biệt với mọi m
Áp dụng hệ thức Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=6\left(m-1\right)=6m-6\\x_1\cdot x_2=9\left(m-3\right)=9m-27\end{matrix}\right.\)
Ta có: \(x_1+x_2=2x_1\cdot x_2\)
\(\Leftrightarrow6m-6=2\left(9m-27\right)\)
\(\Leftrightarrow6m-6-18m+54=0\)
\(\Leftrightarrow-12m+48=0\)
\(\Leftrightarrow-12m=-48\)
hay m=4
Vậy: m=4
\(\left\{{}\begin{matrix}x+y=2\\mx-y=m\end{matrix}\right.\) cho hệ phương trình
a) giải hệ phương trình khi m=-2
b)tìm m để phương trình có nghiệm nguyên
Thay \(m=-2\) vào \(mx-y=m\) \(\Leftrightarrow-2x-y=-2\)
\(\left\{{}\begin{matrix}x+y=2\\-2x-y=-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-2x-2y=-4\\-2x-y=-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-2x-2y+2x+y=-4-\left(-2\right)\\x+y=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-y=-2\\x+y=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=2\\x+2=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=0\end{matrix}\right.\)
Vậy tập nghiệm có hệ pt : \(\left(x;y\right)=\left(0;2\right)\)
tìm a, b để hệ phương trình sau có nghiệm
\(\hept{\begin{cases}\left(2a+b+1\right)x+\left(a-2b-2\right)y=5a\\\left(3a^2+4b^2+2\right)x+\left(2a^2-8b^2-4\right)y=8a^2\end{cases}}\)
Cho phương trình: \(^{x^2-2\left(m+1\right)x-\left(m+2\right)=0}\)
a) giải phương trình khi m=-2
b) tìm điều kiện của m để phương trình trên có 1 nghiệm x1=2
c) Tìm điều kiện của m để pt trên có nghiệm kép
Mong giúp đỡ
a) Thay m=-2 vào pt:
\(x^2-2.\left(-2+1\right).x-\left(-2+2\right)=0\\ \Leftrightarrow x^2+2x=0\\ \Leftrightarrow x.\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
Với m= -2 => S= {-2;0}
b) Để phương trình trên có 1 nghiệm x1=2:
<=> 22 -2.(m+1).2-(m+2)=0
<=> 4-4m -4 -m-2=0
<=> -5m=2
<=>m=-2/5
c) ĐK của m để pt trên có nghiệm kép:
\(\Delta'=0\\ \Leftrightarrow\left(m+1\right)^2+1.\left(m+2\right)=0\\ \Leftrightarrow m^2+3m+3=0\)
Vô nghiệm.
Cho bất phương trình \(8^x+3x4^x+\left(3x^2+2\right)2^x\le\left(m^3-1\right)x^3+2\left(m-1\right)x\). Số các giá trị nguyên của tham số m để phương trình trên có đúng năm nghiệm nguyên dương phân biệt là?
Giải thích cho mình dòng bôi vàng ở dưới, mình cảm ơn nhiều ạ♥
Cho phương trình ( ẩn x): \(x^3-\left(m^2-m+7\right)x-3\left(m^2-m-2\right)=0\)
a, Xác định a để phương trình có một nghiệm x=-2
b, Với giá trị a vừa tìm được, tìm các nghiệm còn lại của phương trình