Cho a,b,c,d \(\in\)[0;1] .CMR a+b+c+d \(\le\)3 + abcd
Cho các số hữu tỉ \(x=\dfrac{a}{b};y=\dfrac{c}{d};z=\dfrac{a+c}{b+d}\left(a,b,c,d\in Z;b>0;d>0\right)\)
Chứng minh rằng nếu x < y thì x < y < z .
Đề bài sai
Ví dụ: với \(a=1;b=2;c=3,d=4\) thì \(x=\dfrac{1}{2}\) ; \(y=\dfrac{3}{4}\) ; \(z=\dfrac{2}{3}\)
Khi đó \(x< y\) nhưng \(z< y\)
\(\text{Vì }\dfrac{a}{b}< \dfrac{c}{d}\text{ nên }ad< bc\left(1\right)\)
\(\text{Xét tích}:a\left(b+d\right)=ab+ad\left(2\right)\)
\(b\left(a+c\right)=ba+bc\left(3\right)\)
\(\text{Từ(1);(2);(3)}\Rightarrow a\left(b+d\right)< b\left(a+c\right)\text{ do đó }\dfrac{a}{b}< \dfrac{a+c}{b+d}\left(4\right)\)
\(\text{Tương tự ta có:}\dfrac{a+c}{b+d}< \dfrac{c}{d}\left(5\right)\)
\(\text{Từ (4);(5) ta được }\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\)
\(\Rightarrow x< y< z\)
Bài 4.Tập hợp nào dưới đây là tập rỗng:
a)A={\(\varnothing\)}
b)B={x\(\in\)R|x2+1=0}
c)C={x\(\in\)R|x< -3 và x>6}
Bài 5.Tìm tất cả tập con của các tập hợp sau:
a)A={3;5;7}
b)B={a;b;c;d}
c)C={\(\varnothing\)}
d)D={x\(\in\)R|(x-1)(x2-5x+6)=0}
Bài 6. Cho các tập hợp: A={a;b;c;d}, B={a;b}. Hãy tìm tất cả các tập X sao cho: B\(\subset\)X\(\subset\)A.
Bài 4: B
Bài 5:
a: {3;5};{3;7};{5;7};{3;5;7};{3};{5};{7};\(\varnothing\)
Bài 1:Cho A={x\(\in\)R|x2-x-6=0}, B={n\(\in\)N|2n-6≤0} và C={n\(\in\)N||n|≤4}
a)Tìm A\(\cap\)B, A\(\cap\)C, B\(\cap\)C, A\(\cap\)B\(\cap\)C
b)Tìm A\(\cup\)B, A\(\cup\)C, B\(\cup\)C, A\(\cup\)B\(\cup\)C
c)Tìm A\B, A\C, B\C
Bài 2:Cho tập E={a,b,c,d}, F={b,c,e,g}, G={c,d,e,f}. CMR:
E\(\cap\)(F\(\cup\)G)=(E\(\cap\)F)\(\cup\)(E\(\cap\)G).
1. Cho \(\dfrac{a}{b}\)> \(\dfrac{c}{d}\)( a,b,c,d \(\in\) Z ; b > 0 , d > 0 ). Chứng tỏ ad > bc
2. Cho 0 < a < 5 < b ; a,b \(\in\) N. Chứng tỏ \(\dfrac{b}{a}\) > 1.
Bài 1:
Ta có:
\(\dfrac{a}{b}>\dfrac{c}{d}\)
\(\Leftrightarrow\dfrac{a.d}{b.d}>\dfrac{b.c}{b.d}\left(b;d>0\right)\)
\(\Leftrightarrow ad>bc\)
Vậy ...
Bài 2:
Ta có:
\(0< a< 5< b\)
\(\Leftrightarrow a;b>0\)
\(\Leftrightarrow\dfrac{b}{a}>0\)
Mà \(a< 5< b\)
\(\Leftrightarrow a< b\)
\(\Leftrightarrow\dfrac{b}{a}>1\)
Vậy ...
Cho các số hữu tỉ: x = a/b; y = c/d; z = a+c/b+d ( a, b, c, d \(\in\)Z; b > 0, d > 0)
Chứng minh rằng nếu x < y thì x < z < y
Bạn tham khảo tại đây:
Câu hỏi của Mạnh Khuất - Toán lớp 7 - Học toán với OnlineMath
Xác định tính đúng sai của mỗi mệnh đề sau:
a) \(\{ a\} \in \{ a;b;c;d\} \)
b) \(\emptyset = \{ 0\} \)
c) \(\{ a;b;c;d\} \in \{ b;a;d;c\} \)
d) \(\{ a;b;c\} \not {\subset } \{ a;b;c\} \)
a) \(\{ a\} \in \{ a;b;c;d\} \) là mệnh đề sai, vì không có quan hệ \( \in \) giữa hai tập hợp.
b) \(\emptyset = \{ 0\} \) là mệnh đề sai, vì tập rỗng là tập không có phần tử nào, còn tập {0} có một phần tử là 0.
c) \(\{ a;b;c;d\} = \{ b;a;d;c\} \) là mệnh đề đúng (có thể thay đổi tùy ý vị trí các phần tử trong một tập hợp).
d) \(\{ a;b;c\} \not {\subset} \{ a;b;c\} \) là mệnh đề sai, vì mỗi phần tử a,b,c đều thuộc tập hợp \(\{ a;b;c\} \).
Cho các số hữu tỉ x=\(\dfrac{a}{b};y=\dfrac{c}{d};z=\dfrac{a+c}{b+d}\)(a,b,c,d \(\in\) Z ;b>0 ; d>0)
CMR nếu x<y thì x<z<y
Cho các số hữu tỉ \(x=\frac{a}{b};y=\frac{c}{d};z=\frac{a+c}{b+d}\) (a,b,c,d \(\in\) Z ; b>0 ; d>0)
CMR nếu x<y thì x<z<y
Vì \(x< y\Rightarrow\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\) (*)
Thêm ab vào hai vế của (*) : ad + ab < bc + ab
=> a(b+d) < b(a+c)
=> \(\frac{a}{b}< \frac{a+c}{b+d}\)
=> x < z (1)
Thêm cd vào hai vế của (*): ad + cd < bc + cd
=> d(a + c) < c(b + d)
=> \(\frac{a+c}{b+d}< \frac{c}{d}\)
=> z < y (2)
Từ (1) và (2) => x < z < y
Vì x<y⇒ab <cd ⇒ad<bc (*)
Thêm ab vào hai vế của (*) : ad + ab < bc + ab
=> a(b+d) < b(a+c)
=> ab <a+cb+d
=> x < z (1)
Thêm cd vào hai vế của (*): ad + cd < bc + cd
=> d(a + c) < c(b + d)
=> a+cb+d <cd
=> z < y (2)
Từ (1) và (2) => x < z < y
Cho \(\frac{a}{b}\)>\(\frac{c}{d}\)(với a, b, c, d, \(\in\)\(ℤ\), b>0, d>0). Chứng tỏ ad>bc
\(\frac{a}{b}>\frac{c}{d}\Rightarrow\frac{a\times d}{b\times d}>\frac{c\times b}{d\times b}\) (quy đồng mẫu số) Vì do mẫu giống nhau nên tử lớn hơn sẽ lớn hơn \(\Rightarrow a\times d>c\times b\)
\(\frac{a}{b}>\frac{c}{d}\Rightarrow\frac{a.d}{b.d}>\frac{c.b}{d.b}\left(d,b\ne0\right)\)
\(\Rightarrow a.d>c.b\)
Cho \(\frac{a}{b}\)và \(\frac{c}{d}\)\(\in\)số hữu tỉ Q (b > 0; d > 0). Chứng minh rằng, nếu \(\frac{a}{b}>\frac{c}{d}\)thì \(\frac{a}{b}>\frac{a+c}{b+d}>\frac{c}{d}\)