Mọi người chứng minh giúp em cái chỗ \(f\left(a;b;c\right)\ge f\left(t;t;c\right)\) trong ảnh này được ko ạ? Em nghĩ mãi ko ra! Em đang học bđt mà thấy cái bài này khó quá:(

Tìm tất cả hàm số \(f:R\rightarrow R\) thoả mãn:
\(f\left(xf\left(y\right)-y\right)+f\left(xy-x\right)+f\left(x+y\right)=2xy,\forall x,y\in R\)
Em chỉ mới chứng minh được f là hàm lẻ ạ, mong mọi người giúp :'(
Thay \(x=0;y=0\) vào giả thiết ta được \(f\left(0\right)=0\)
Thay \(y=0\) ta được \(f\left(x\right)+f\left(-x\right)=0\Rightarrow f\) là hàm lẻ
(Phân tích 1 chút: khi đã có hàm lẻ, ta cần thế tiếp 1 cặp sao cho "khử" được biểu thức phức tạp dạng hàm lồng đầu tiên, bằng cách tìm 1 giá trị y sao cho: \(x.f\left(y\right)-y=-\left(x+y\right)\) hoặc là \(x.f\left(y\right)-y=-\left(xy-x\right)\). Cái thứ nhất cho ta \(x.\left[f\left(y\right)+1\right]=0\Rightarrow f\left(y\right)=-1\) , nghĩa là ta chỉ cần tìm 1 hằng số c sao cho \(f\left(c\right)=-1\). Cái thứ 2 ko cho điều gì tốt nên bỏ qua. Bây giờ ta đi tìm c. Vế phải cần bằng -1, nghĩa là \(xy=-\dfrac{1}{2}\), vế trái cần khử bớt 2 số hạng. Nhưng trước khi có c thì \(f\left(x.f\left(y\right)-y\right)\) chưa khử được, nên ta cần khử cặp sau, bằng cách cho \(xy-x=-\left(x+y\right)\Rightarrow xy=-y\Rightarrow x=-1\), thay vào \(xy=-\dfrac{1}{2}\Rightarrow y=\dfrac{1}{2}\). Xong.)
Thế \(x=-1;y=\dfrac{1}{2}\) ta được:
\(f\left(-f\left(\dfrac{1}{2}\right)-\dfrac{1}{2}\right)+f\left(-\dfrac{1}{2}+1\right)+f\left(-1+\dfrac{1}{2}\right)=-1\)
\(\Leftrightarrow f\left(-f\left(\dfrac{1}{2}\right)-\dfrac{1}{2}\right)=-1\)
Đặt \(c=-f\left(\dfrac{1}{2}\right)-\dfrac{1}{2}\) là 1 hằng số nào đó
\(\Rightarrow f\left(c\right)=-1\)
Thế \(y=c\) vào ta được:
\(f\left(x.f\left(c\right)-c\right)+f\left(cx-x\right)+f\left(x+c\right)=2c.x\)
\(\Leftrightarrow f\left(-x-c\right)+f\left(x+c\right)+f\left(cx-x\right)=2c.x\)
\(\Leftrightarrow f\left(cx-x\right)=2c.x\) (1)
- Nếu \(c=1\Rightarrow f\left(0\right)=2x\) ko thỏa mãn \(f\left(0\right)=0\)
\(\Rightarrow c\ne1\), khi đó đặt \(cx-x=t\) \(\Rightarrow x=\dfrac{t}{c-1}\)
(1) trở thành \(f\left(t\right)=\dfrac{2c}{c-1}.t\)
Đặt \(\dfrac{2c}{c-1}=a\) \(\Rightarrow f\left(t\right)=a.t\)
Hay hàm cần tìm có dạng \(f\left(x\right)=ax\) với a là hằng số
Hi mọi người giải giúp em với ạ🙆♂️ cái câu D bài 1 chỗ gạch đỏ kia là dấu + nha mọi người. Em cảm ơn trước ạ😘❤
Bài 1:
a: \(=-10x^3+20x^4-5x\)
b: \(=\dfrac{1}{3}a^2b+7a^5-1\)
c: \(=a^3+8+25-a^3=33\)
d: \(=x^2-16+8-x^3=-x^3+x^2-8\)
e: \(=a^3+1+8-a^3=9\)
f: \(=\dfrac{7-2x+4x-8}{2x+3}=\dfrac{2x-1}{2x+3}\)
g: \(=\dfrac{3}{2\left(x+3\right)}-\dfrac{2}{x\left(x+3\right)}\)
\(=\dfrac{3x-4}{2x\left(x+3\right)}\)
Chứng minh rằng:
\(A=\left(2^n-1\right)\cdot\left(2^n+1\right)\)chia hết cho 3
Mọi người giúp em với ạ! Em cảm ơn!
Vì \(2^n-1\)và \(2^n+1\)là 2 số lẻ liên tiếp
Đặt \(2^n-1=3k\)và \(2^n+1=3k+2\)\(k\inℕ\)
\(\Rightarrow\left(2^n-1\right).\left(2^n+1\right)=3k.\left(3k+2\right)\)
mà \(3k⋮3\)\(\Rightarrow3k.\left(3k+2\right)⋮3\)
hay \(A⋮3\left(đpcm\right)\)
Cho đa thức \(f\left(x\right)=ax^3+bx^2+cx+d\) . Biết \(f\left(x\right)=0\) với mọi giá trị của \(x\). Chứng minh \(a=b=c=d=0\)
Giúp e với ạ :<
Ta có:
\(f\left(x\right)=ax^3+bx^2+cx+d\\ f\left(x\right)=0x^3+0x^2+0x+0\)
\(\Rightarrow a=b=c=d\left(theo.pp.đa.thức.đồng.nhất\right)\\ Chúc.bạn.học.Toán.tốt.\)
Đề hình như sai
Cho a=1, b=2, c=3, d=0, x=0 có đúng đâu nhỉ
Mọi người giúp em giải bài toán nâng cao này với:
f(11).f(20) = 2017
chứng minh tại sao f(x)-246 không có nghiệm nguyên
Mọi Người giúp em chi tiết với ạ
Cho hình vuông ABCD cạnh a. Lấy điểm M bất kì trên BC. Trên tia đối của tia DC lấy điểm N sao cho DN=BM.
a ) Chứng minh AN=AM.
b ) Kẻ AI MN tại I, tia AI cắt DC tại F. Lấy E đối xứng với F qua I. Chứng minh NEMF là hình thoi
c ) Đường vuông góc với AM tại M cắt đường vuông góc với AN tại N ở H. Chứng minh : AN= AM và ba điểm A, I, H thẳng hàng.
d ) Chứng minh rằng khi M thay đổi vị trí trên BC thì chu vi tam giác MFC luôn không đổi.
1. Cho tập hợp \(E=\left\{a,b,c,d\right\}\); \(\left\{F=b,c,e,g\right\}\); \(G=\left\{c,d,e,f\right\}\)
CMR: \(E\cap\left(F\cup G\right)=\left(E\cap F\right)\cup\left(E\cap G\right)\)
Mọi người giúp em với ạ. E cảm ơn
cho biết \(\left(x-1\right).f\left(x\right)=\left(x+4\right).f\left(x+8\right)\)với mọi x
CHỨNG MINH RẰNG \(f\left(x\right)\)có ít nhất hai nghiệm
Nếu x = 1
=> (x - 1).f(x) = (x + 4).f(x + 8) (1)
=> 0.f(1) = 5.f(9)
=> f(9) = 0
=> x = 1 là 1 nghiệm của f(x)
Nếu x = -4
=> (1) <=> 3.f(-4) = 0.f(4)
=> 3.f(-4) = 0
=> f(-4) = 0
=> x = -4 là 1 nghiệm của f(x)
=> F(x) có ít nhất 2 nghiệm
ý em là cái khúc mà người ta yêu cầu nhìn hình để chứng minh song song hay tính góc thì cái hình em phải làm như thế nào để đăng lên cho mọi người thấy
Em có thể chụp ảnh đề bài rồi đăng lên như đăng câu hỏi em đã hỏi em nhé