ΔΔABC cân tại A , AM là trung tuyến , BH là đường cao . Gọi BH cắt AM tại K . Chứng minh CK ⊥ AB .
Cho tg nhọn ABC cân tại A, đường cao BH, trung tuyến AM
a)Cm AM là đường phân giác
b)Từ M kẻ MD⊥AB, ME⊥AC, MF⊥BH.(D ∈AB, E ∈AC, F ∈BH). Chứng minh rằngME=FH
c) Gọi K là giao điểm của AM và BH. Chứng minh CK//MD
\(\Delta\)ABC cân tại A , AM là trung tuyến , BH là đường cao . Gọi BH cắt AM tại K . Chứng minh CK \(\perp\) AB .
Xét ΔABM và ΔACM, có:
AB = AC (gt)
BM = CM ( do AM là đường trung tuyến)
AM: cạnh chung
Nên: ΔABM = ΔACM (c - c - c)
=> góc AMB = góc AMC ( 2 góc t/ư)
Mà: góc AMB + góc AMC = 180o ( 2 góc kề bù)
Do đó: Góc AMB = góc AMC = 90o
Xét ΔBKM và ΔCKM, có:
BM = CM ( do AM là đường trung tuyến)
góc KMB = góc KMC = 90o ( Hay góc AMB = góc AMC)
KM: cạnh chung
Nên: ΔBKM = ΔCKM ( c - g - c)
=> góc KBM = góc KCM ( 2 góc t/ư)
Gọi CN giao AB tại N
Xét ΔBNC và ΔCHB, có:
góc NCB = góc HBC (hay góc KBM = góc KCM)
BC: cạnh chung
góc NBC = góc HCB (do ΔABC cân tại A)
Do đó: ΔBNC = ΔCHB ( g - c - g)
Nên: NB = HC ( 2 cạnh t/ư)
Lại có: AN + NB = AB (gt)
AH + HC = AC (gt)
Mà: NB = HC (cmt)
AB = AC ( do ΔABC cân tại A)
Do đó: AN = AH
Xét ΔABH = ΔACN, có:
AH = AN (cmt)
góc A: chung
AB = AC ( do ΔABC cân tại A)
Nên: ΔABH = ΔACN ( c - g - c)
=> góc AHB = góc ANC ( 2 góc t/ư)
Mà: góc AHB = 90o (gt)
=> góc ANC = góc AHB = 90o
Vậy CN ⊥ AB
Hay: CK ⊥ AB (đpcm)
Cho ∆ABC cân tại A, đường cao BH, CK a) Chứng minh BH = CK b) Chứng minh HK // BC c) BH cắt CK tại I. Gọi trung điểm AI là M, trung điểm AH là N. Chứng minh MN//BH d) Gọi giao điểm của IN và HM là K. Gọi D là trung điểm IH. Chứng minh A, K, D thẳng hàng e) Chứng minh: MN = 1/2 IK
Cho \(\Delta ABC\)( góc A\(\ne\) 90 độ) với đường trung tuyến AM và các đường cao BH,CK. Đường thẳng qua A vuông góc với AM cắt các tia BH,CK lần lượt tại D,E. Chứng minh tam giác DME là tam giác cân
Kẻ \(MI⊥AB,MJ⊥AC\)
Ta thấy \(\widehat{EAK}=\widehat{AMI}\) (Cùng phụ với \(\widehat{KAM}\))
Vậy nên \(\Delta EAK\sim\Delta AMI\left(g-g\right)\Rightarrow\frac{EA}{AM}=\frac{AK}{MI}=2.\frac{AK}{KC}\)
Tương tự : \(\Delta DAH\sim\Delta AMJ\left(g-g\right)\Rightarrow\frac{DA}{AM}=\frac{AH}{MJ}=2.\frac{AH}{BH}\)
Mà \(\Delta AHB\sim\Delta AKC\left(g-g\right)\Rightarrow\frac{AH}{AK}=\frac{HB}{KC}\Rightarrow\frac{AH}{HB}=\frac{AK}{KC}\)
Vậy thì \(\frac{AE}{AM}=\frac{DE}{AM}\Rightarrow AE=ED.\)
Tam giác DEM có MA là đường cao đồng thời là trung tuyến nên nó là tam giác cân tại M.
cho tam giác ABC có ba góc nhọn. Gọi BH, CK lần lượt là các đường cao kẻ từ B và C( H thuộc AC, K thuộc AB). Biết BH cắt CK tại M và AM cắt BC tại N. Chứng minh tứ giác HKBC nội tiếp đường tròn
\(\widehat{BKC}=\widehat{BHC}\left(=90^0\right)\) nên HKBC nội tiếp đường tròn
Cho tam giác ABC vuông tại A có đường cao AH
a/ Chứng minh tam giác ABH đồng dạng tam giác CBA.
b/ Gọi M là trung điểm của BH. Kẻ CK vuông góc với AM tại K , CK cắt AH tại I. Chứng minh IA = IH
a: Xét ΔABH vuông tại H và ΔCBA vuông tại A có
góc B chung
=>ΔABH đồng dạng với ΔCBA
b: Xét ΔCAM có
CK,AH là đường cao
CK cắt AH tại I
=>I là trực tâm
=>MI vuông góc AC
=>MI//AB
Xét ΔHAB có
M là trung điểm của HB
MI//AB
=>I là trung điểm của AH
=>IA=IH
Cho nửa đường tròn (O; R) đường kính AB. Điểm M thuộc nửa đường tròn. Gọi H là điểm chính giữa cung AM. Tia BH cắt AM tại I. Tiếp tuyến của nửa đường tròn tại A cắt BH tại K. Nối AH cắt BM tại E.
1. Chứng minh tam giác BAE là tam giác cân;
2. Chứng minh KH.KB=KE2;
3. Đường tròn tâm B, bán kính BA cắt AM tại N. Chứng minh tứ giác BIEN nội tiếp.
ban tu ve hinh nhe
Ta co goc AEBnam ngoai dt nen goc AEB = 1/2(CUNG AB-cungHM)=1/2(cungHM+ cung MB)
ma goc Achan cung HB nen AEB=A nen tam giac AEB can o B
ban se de cm duoc AEBK thuoc 1dt nenKEB=90 nen KE^2=KH.KB
xet tam giac AEB co EI la duong cao con lai nenEIM dong dang EAB nenEIM=EBA
ma EBA=MBN nen EIM=MBN
ma EIM VA MBNcung nhin EN nenIENB thuoc 1duong tron
Bài 8 :
Cho ΔABC cân tại A có M là trung điểm của BC
a) Vẽ hình
b) Chứng minh rằng : AM là đường trung trực của ΔABC
c) Kẻ BH vuông góc với AC (H thuộc AC), CK vuông góc với AB (K thuộc AB). Chứng minh rằng : BH = CK
d) Chứng minh rằng : HK//BC
e) Gọi O là giao điểm của BH và CK
Chứng minh rằng : ba điểm AOM thẳng hàng
Cho ΔABC, AM là đường trung tuyến, BH ⊥AM tại H, BH ⊥CK tại K. Chứng minh: BH =CM, BH<AC