CM: Ta có: t/giác ABC cân tại A
AM là đường trung tuyến
=> AM cũng là đường cao (t/c t/giác cân)
Đường cao BH cắt đường cao AM tại K
=> K là trọng tâm của t/giác ABC
=> CK là đường cao thứ 3
=> CK \(\perp\)AB
CM: Ta có: t/giác ABC cân tại A
AM là đường trung tuyến
=> AM cũng là đường cao (t/c t/giác cân)
Đường cao BH cắt đường cao AM tại K
=> K là trọng tâm của t/giác ABC
=> CK là đường cao thứ 3
=> CK \(\perp\)AB
Cho tg nhọn ABC cân tại A, đường cao BH, trung tuyến AM
a)Cm AM là đường phân giác
b)Từ M kẻ MD⊥AB, ME⊥AC, MF⊥BH.(D ∈AB, E ∈AC, F ∈BH). Chứng minh rằngME=FH
c) Gọi K là giao điểm của AM và BH. Chứng minh CK//MD
Cho \(\Delta ABC\)( góc A\(\ne\) 90 độ) với đường trung tuyến AM và các đường cao BH,CK. Đường thẳng qua A vuông góc với AM cắt các tia BH,CK lần lượt tại D,E. Chứng minh tam giác DME là tam giác cân
Bài 8 :
Cho ΔABC cân tại A có M là trung điểm của BC
a) Vẽ hình
b) Chứng minh rằng : AM là đường trung trực của ΔABC
c) Kẻ BH vuông góc với AC (H thuộc AC), CK vuông góc với AB (K thuộc AB). Chứng minh rằng : BH = CK
d) Chứng minh rằng : HK//BC
e) Gọi O là giao điểm của BH và CK
Chứng minh rằng : ba điểm AOM thẳng hàng
Cho tam giác ABC cân tại A,đường trung tuyến AM và đường cao BH cắt nhau tại O.Phân giác góc ACH cắt AM tại I,BH giao AB=B'.Tính góc AB'I ?
: Cho ∆ABC cân tại A. Gọi M là trung điểm của cạnh BC. a) Chứng minh : AM ⊥ BC b) Từ M vẽ MH ⊥ AB và MK ⊥AC. Chứng minh BH = CK. c) Từ B vẽ BP ⊥ AC, BP cắt MH tại I và cắt MA tại O. Chứng minh ∆IBM cân và CO // MH.
cho tam giác ABC cân tại A đường trung tuyến AM và đường phân giác BD cắt nhau tại K gọi là giao điểm của CK và AB Chứng minh rằng BD=CE giúp với ạ
Cho tam giác giác ABC vuông cân tại A có đường trung tuyến là AM . E là điểm thuộc cạnh BC. Kẻ BH,CK vuông góc với AE (H,K thuộc AE)
a. Chứng minh BH=AK
b. Cho biết MHK là tam giác gì? Tại sao
Cho tam giác ABC cân tại A. Trên tia đối của các tia BC và CB tương ứng lấy hai điểm D và E sao cho BD = CE. Gọi M là trung điểm BC. Từ B và C kẻ BH _|_ AD, CK _|_ AE (H thuộc AD, K thuộc AE). Chứng minh rằng ba đường thẳng BH, CK, AM cùng cắt nhau tại 1 điểm.
Cho ABC cân tại A . Vẽ BH ⊥ AC ( H AC), CK ⊥ AB, ( K AB ). a/ Vẽ hình b/ Chứng minh rằng AH = AK c/ Gọi I là giao điểm BH và CK. Chứng minh 𝐾𝐴𝐼 ̂ = 𝐻𝐴𝐼 ̂ d/ Đường thẳng AI cắt BC tại P. Chứng minh AI ⊥ BC tại P.