Tìm x,y sao cho
\(a.\left(x+3\right)\left(y+2\right)=1\)
\(b.\left(2x-5\right)\left(y+6\right)=17\)
\(c.\left(x-1\right)\left(x+y\right)=33\)
\(d.5x^2+6y^2=74\)
a)\(\left\{{}\begin{matrix}2\left|x-6\right|+3\left|y-1\right|=5\\5\left|x-6\right|-4\left|y+1\right|=1\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}2\left|x+y\right|-\left|x-y\right|=9\\3\left|x+y\right|+2\left|x-y\right|+17\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}4\left|x+y\right|+3\left|x-y\right|=8\\3\left|x+y\right|-5\left|x-y\right|=6\end{matrix}\right.\)
d) \(\left\{{}\begin{matrix}x^2-xy=24\\2x-3y=1\end{matrix}\right.\)
e) \(\left\{{}\begin{matrix}3x-4y+1=0\\xy=3\left(x+y\right)-9\end{matrix}\right.\)
f) \(\left\{{}\begin{matrix}2x+3y=5\\3x^2-y^2+2y=4\end{matrix}\right.\)
a: Đặt |x-6|=a, |y+1|=b
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}2a+3b=5\\5a-4b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=1\end{matrix}\right.\)
=>|x-6|=1 và |y+1|=1
\(\Leftrightarrow\left\{{}\begin{matrix}x\in\left\{7;5\right\}\\y\in\left\{0;-2\right\}\end{matrix}\right.\)
b: Đặt |x+y|=a, |x-y|=b
Theo đề, ta có: \(\left\{{}\begin{matrix}2a-b=19\\3a+2b=17\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{55}{7}\\b=-\dfrac{23}{7}\left(loại\right)\end{matrix}\right.\)
=>HPTVN
c: Đặt |x+y|=a, |x-y|=b
Theo đề ta có: \(\left\{{}\begin{matrix}4a+3b=8\\3a-5b=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=0\end{matrix}\right.\)
=>|x+y|=2 và x=y
=>|2x|=2 và x=y
=>x=y=1 hoặc x=y=-1
giải các hệ phương trình sau
1\(\left\{{}\begin{matrix}\left(x-1\right)-\left(x+2\right)^2=9y\\\left(y-3\right)^2-\left(y+2\right)^2=5x\end{matrix}\right.\)
2 \(\left\{{}\begin{matrix}\left(7+x\right)^2-\left(5+x\right)^2=6y\\\left(2-y\right)^2-\left(6-y\right)^2=4x\end{matrix}\right.\)
3) \(\left\{{}\begin{matrix}\left(x+1\right)^2+\left(y-2\right)^2=x^2+y^2\\\left(x-3\right)^2+\left(y+1\right)^2=x^2-x+y^3-3\end{matrix}\right.\)
Rút gọn biểu thức :
a) \(2\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2+\left(x-y\right)^2\)
b) P=\(\left(5x-1\right)+2\left(1-5x\right)\left(4+5x\right)+\left(5x+4\right)^2\)
c) Q=\(\left(x-y\right)^3+\left(y+x\right)^3+\left(y-x\right)^3-3xy\left(x+y\right)\)
d) P = \(12\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(a,2\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2+\left(x-y\right)^2\)
\(=2x^2+2y^2+x^2+2xy+y^2+x^2-2xy+y^2=3\left(x^2+y^2\right)\)\(b,\left(5x-1\right)+2\left(1-5x\right)\left(4x+5\right)+\left(5x+4\right)\)\(=\left[\left(5x-1\right)-\left(5x+4\right)\right]^2=25\)
c)\(Q=\left(x-y\right)^3+\left(x+y\right)^3+\left(x-y\right)^3-3xy\left(x+y\right)\)
\(=x^3-3x^2y+3xy^2-y^3+x^3+3x^2y+3xy^2+y^3-x^3+3x^2y-3xy^2+y^3-3xy^2-3x^2y\)
\(=x^3+y^3\)
d)\(P=12\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(2P=\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(2P=\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(2P=\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(2P=\left(5^{16}-1\right)\left(5^{16}+1\right)\)
\(2P=5^{32}-1\Rightarrow P=\dfrac{5^{32}-1}{2}\)
a) \(2\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2+\left(x-y\right)^2\)
\(\Leftrightarrow2\left(x^2-y^2\right)+x^2+2xy+y^2+x^2-2xy+y^2\)
\(\Leftrightarrow2x^2-2y^2+x^2+2xy+y^2+x^2-2xy+y^2\)
\(\Leftrightarrow4x^2\)
Bài 1: Rút gọn các biểu thức sau:
a) \(3x^2\) - 2x( 5+ 1,5x) +10
b) 7x ( 4y- x) + 4y( y-7x) - 2( \(2y^2\) - 3,5x)
c) \(\left\{2x-3\left(x-1\right)-5\left[x-4\left(3-2x\right)+10\right]\right\}.\left(-2x\right)\)
Bài 2: Tìm x, biết:
a) 3( 2x -1) - 5( x -3) + 6( 3x -4) = 24
b) \(2x^2+3\left(x^2-1\right)=5x\left(x+1\right)\)
c) \(2x\left(5-3x\right)+2x\left(3x-5\right)-3\left(x-7\right)=3\)
d) \(3x\left(x+1\right)-2x\left(x+2\right)=-1-x\)
Bài 3: Tính giá trị của các biểu thức sau:
a)\(A=x^2\left(x+y\right)-y\left(x^2+y^2\right)+2002\) Với \(x=1;y=-1\)
b) \(B=5x\left(x-4y\right)-4y\left(y-5x\right)-\dfrac{11}{20}\) Với \(x=-0,6;y=-0,75\)
Bài 4: Chứng tỏ rằng giá trị của biểu thức sau không phụ thuộc vào giá trị biến:
a) \(2\left(2x+x^2\right)-x^2\left(x+2\right)+\left(x^3-4x+3\right)\)
b) \(z\left(y-x\right)+y\left(z-x\right)+x\left(y+z\right)-2yz+100\)
c) \(2y\left(y^2+y+1\right)-2y^2\left(y+1\right)-2\left(y+10\right)\)
Bài 5: Tính giá trị của biểu thức:
a) \(A=\left(x-3\right)\left(x-7\right)-\left(2x-5\right)\left(x-1\right)\) Với \(x=0;x=1;x=-1\)
b) \(B=\left(3x+5\right)\left(2x-1\right)+\left(4x-1\right)\left(3x+2\right)\) Với \(\left|x\right|=2\)
c) \(C=\left(2x+y\right)\left(2z+y\right)+\left(x-y\right)\left(y-z\right)\) Với \(x=1;y=1;z=\left|1\right|\)
Bài 1:
a) \(3x^2-2x(5+1,5x)+10=3x^2-(10x+3x^2)+10\)
\(=10-10x=10(1-x)\)
b) \(7x(4y-x)+4y(y-7x)-2(2y^2-3,5x)\)
\(=28xy-7x^2+(4y^2-28xy)-(4y^2-7x)\)
\(=-7x^2+7x=7x(1-x)\)
c)
\(\left\{2x-3(x-1)-5[x-4(3-2x)+10]\right\}.(-2x)\)
\(\left\{2x-(3x-3)-5[x-(12-8x)+10]\right\}(-2x)\)
\(=\left\{3-x-5[9x-2]\right\}(-2x)\)
\(=\left\{3-x-45x+10\right\}(-2x)=(13-46x)(-2x)=2x(46x-13)\)
Bài 2:
a) \(3(2x-1)-5(x-3)+6(3x-4)=24\)
\(\Leftrightarrow (6x-3)-(5x-15)+(18x-24)=24\)
\(\Leftrightarrow 19x-12=24\Rightarrow 19x=36\Rightarrow x=\frac{36}{19}\)
b)
\(\Leftrightarrow 2x^2+3(x^2-1)-5x(x+1)=0\)
\(\Leftrightarrow 2x^2+3x^2-3-5x^2-5x=0\)
\(\Leftrightarrow -5x-3=0\Rightarrow x=-\frac{3}{5}\)
\(2x^2+3(x^2-1)=5x(x+1)\)
Bài 2:
c) \(2x(5-3x)+2x(3x-5)-3(x-7)=3\)
\(\Leftrightarrow 2x(5-3x)-2x(5-3x)-3(x-7)=3\)
\(\Leftrightarrow -3(x-7)=3\)
\(\Leftrightarrow x-7=-1\Rightarrow x=6\)
d)
\(3x(x+1)-2x(x+2)=-1-x\)
\(\Leftrightarrow 3x^2+3x-(2x^2+4x)+x+1=0\)
\(\Leftrightarrow x^2+1=0\)
Vô lý vì \(x^2+1\geq 0+1=1>0\) với mọi $x$
Vậy không tồn tại $x$ thỏa mãn.
Tìm x:
a) 2x(x-5)-x(2x+3)=26
b) \(\left(3y^2-y+1\right)\left(y-1\right)+y^2\left(4-3y\right)=\frac{5}{2}\)
c) \(2x^2+3\left(x-1\right)\left(x+1\right)=5x\left(x+1\right)\)
a. \(2x\left(x-5\right)-x\left(2x+3\right)=26\Rightarrow2x^2-10x-2x^2-3x=26\)
\(\Rightarrow-13x=26\Rightarrow x=-2\)
b. \(\left(3y^2-y+1\right)\left(y-1\right)+y^2\left(4-3y\right)=\frac{5}{2}\)
\(\Rightarrow3y^3-3y^2-y^2+y+y-1+4y^2-3y^3=\frac{5}{2}\)\(\Rightarrow2y=\frac{7}{2}\Rightarrow y=\frac{7}{4}\)
c. \(2x^2+3\left(x+1\right)\left(x-1\right)=5x^2+5x\Rightarrow5x^2-3=5x^2+5x\)
\(\Rightarrow x=-\frac{3}{5}\)
tính đạo hàm
a) \(y=\left(x+2\right)\left(2x^2-3\right)\)
b) \(y=\left(x-1\right)^2\left(x+2\right)\)
c) \(y=\left(x^2-1\right)\left(2x+1\right)\)
d) \(y=\left(x+2\right)\left(2x^2-5\right)\)
a: \(y=\left(x+2\right)\left(2x^2-3\right)\)
=>\(y'=\left(x+2\right)'\left(2x^2-3\right)+\left(x+2\right)\left(2x^2-3\right)'\)
=>\(y'=2x^2-3+\left(x+2\right)\cdot2x\)
\(\Leftrightarrow y'=2x^2-3+2x^2+4x=4x^2+4x-3\)
b: \(y=\left(x-1\right)^2\left(x+2\right)\)
=>\(y=\left(x^2-2x+1\right)\left(x+2\right)\)
=>\(y'=\left(x^2-2x+1\right)'\left(x+2\right)+\left(x^2-2x+1\right)\left(x+2\right)'\)
=>\(y'=\left(2x-2\right)\left(x+2\right)+\left(x^2-2x+1\right)\)
=>\(y'=2x^2+4x-2x-4+x^2-2x+1\)
=>\(y'=3x^2-3\)
c: \(y=\left(x^2-1\right)\left(2x+1\right)\)
=>\(y'=\left(x^2-1\right)'\left(2x+1\right)+\left(x^2-1\right)\left(2x+1\right)'\)
=>\(y'=2x\left(2x+1\right)+2\left(x^2-1\right)\)
=>\(y'=4x^2+2x+2x^2-2=6x^2+2x-2\)
d: \(y=\left(x+2\right)\left(2x^2-5\right)\)
=>\(y'=\left(x+2\right)'\left(2x^2-5\right)+\left(x+2\right)\left(2x^2-5\right)'\)
=>\(y'=2x^2-5+2x\left(x+2\right)=4x^2+4x-5\)
Giải các hệ phương trình :
a) \(\left\{{}\begin{matrix}\left(x+3\right)\left(y+5\right)=\left(x+1\right)\left(y+8\right)\\\left(2x-3\right)\left(5y+7\right)=2\left(5x-6\right)\left(y+1\right)\end{matrix}\right.\);
b) \(\left\{{}\begin{matrix}\dfrac{2x-3}{2y-5}=\dfrac{3x+1}{3y-4}\\2\left(x-3\right)-3\left(y+2\right)=-16\end{matrix}\right.\).
a) \(\left\{{}\begin{matrix}\left(x+3\right)\left(y+5\right)=\left(x+1\right)\left(y+8\right)\\\left(2x-3\right)\left(5y+7\right)=2\left(5x-6\right)\left(y+1\right)\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}xy+5x+3y+15=xy+8x+y+8\\10xy+14x-15y-21=10xy+10x-12y-12\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}-3x+2y=-7\\4x-3y=9\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}-9x+6y=-21\\8x-6y=18\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}-x=-3\\8x-6y=18\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=3\\8.3-6y=18\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)
Vậy hệ phương trình có nghiệm (x;y)=(3;1)
b) ĐKXĐ:\(\left\{{}\begin{matrix}2y-5\ne0\\3y-4\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y\ne\dfrac{5}{2}\\y\ne\dfrac{4}{3}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\dfrac{2x-3}{2y-5}=\dfrac{3x+1}{3y-4}\\2\left(x-3\right)-3\left(y+2\right)=-16\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}\left(2x-3\right)\left(3y-4\right)=\left(3x+1\right)\left(2y-5\right)\\2x-6-3y-6=-16\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}6xy-8x-9y+12=6xy-15x+2y-5\\2x-3y=-4\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}7x-11y=-17\\2x-3y=-4\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}14x-22y=-34\\14x-21y=-28\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}14x-22y=-34\\-y=-6\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}14x-22.6=-34\\y=6\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=7\left(TM\right)\\y=6\left(TM\right)\end{matrix}\right.\)
Vậy hệ phương trình có nghiệm (x;y)=(7;6)
tìm khoảng đồng biến nghịch biến
a) \(y=\left(5x-10\right)^4\)
b) \(y=\left(-x-1\right)\left(x+2\right)^4\)
c) \(y=\left(x^3-1\right)^3\)
d) \(y=\left(x^2-1\right)\left(x+2\right)\)
a: \(y=\left(5x-10\right)^4\)
=>\(y'=4\cdot\left(5x-10\right)'\cdot\left(5x-10\right)^3\)
\(=4\cdot5\cdot\left(5x-10\right)^3=20\left(5x-10\right)^3\)
Đặt y'>0
=>\(20\left(5x-10\right)^3>0\)
=>\(\left(5x-10\right)^3>0\)
=>5x-10>0
=>x>2
Đặt y'<0
=>\(20\left(5x-10\right)^3< 0\)
=>\(\left(5x-10\right)^3< 0\)
=>5x-10<0
=>x<2
Vậy: hàm số đồng biến trên \(\left(2;+\infty\right)\)
Hàm số nghịch biến trên \(\left(-\infty;2\right)\)
c: \(y=\left(x^3-1\right)^3\)
=>\(y'=3\left(x^3-1\right)'\cdot\left(x^3-1\right)^2\)
\(=9x^2\left(x^3-1\right)^2>=0\forall x\)
=>Hàm số luôn đồng biến trên R
d: \(y=\left(x^2-1\right)\left(x+2\right)\)
=>\(y'=\left(x^2-1\right)'\left(x+2\right)+\left(x^2-1\right)\left(x+2\right)'\)
\(=2x\left(x+2\right)+x^2-1\)
\(=2x^2+4x+x^2-1=3x^2+4x-1\)
Đặt y'>0
=>\(3x^2+4x-1>0\)
=>\(\left[{}\begin{matrix}x< \dfrac{-2-\sqrt{7}}{3}\\x>\dfrac{-2+\sqrt{7}}{3}\end{matrix}\right.\)
Đặt y'<0
=>\(3x^2+4x-1< 0\)
=>\(\dfrac{-2-\sqrt{7}}{3}< x< \dfrac{-2+\sqrt{7}}{3}\)
Vậy: Hàm số đồng biến trên các khoảng \(\left(-\infty;\dfrac{-2-\sqrt{7}}{3}\right);\left(\dfrac{-2+\sqrt{7}}{3};+\infty\right)\)
Hàm số nghịch biến trên khoảng \(\left(\dfrac{-2-\sqrt{7}}{3};\dfrac{-2+\sqrt{7}}{3}\right)\)
b: \(y=\left(-x-1\right)\left(x+2\right)^4\)
=>\(y'=\left(-x-1\right)'\left(x+2\right)^4+\left(-x-1\right)\left[\left(x+2\right)^4\right]'\)
\(=-\left(x+2\right)^4+\left(-x-1\right)\cdot4\left(x+2\right)'\left(x+2\right)^3\)
\(=-\left(x+2\right)^4+4\left(x+2\right)^3\cdot\left(-x-1\right)\)
\(=-\left(x+2\right)^3\left[\left(x+2\right)+4\left(x+1\right)\right]\)
\(=-\left(x+2\right)^2\cdot\left(x+2\right)\left(5x+6\right)\)
Đặt y'<0
=>\(-\left(x+2\right)^2\left(x+2\right)\left(5x+6\right)< 0\)
=>(x+2)(5x+6)>0
TH1: \(\left\{{}\begin{matrix}x+2>0\\5x+6>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>-2\\x>-\dfrac{6}{5}\end{matrix}\right.\Leftrightarrow x>-\dfrac{6}{5}\)
TH2: \(\left\{{}\begin{matrix}x+2< 0\\5x+6< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x< -2\\x< -\dfrac{6}{5}\end{matrix}\right.\Leftrightarrow x< -2\)
Đặt y'>0
=>(x+2)(5x+6)<0
TH1: \(\left\{{}\begin{matrix}x+2>0\\5x+6< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>-2\\x< -\dfrac{6}{5}\end{matrix}\right.\Leftrightarrow-2< x< -\dfrac{6}{5}\)
TH2: \(\left\{{}\begin{matrix}x+2< 0\\5x+6>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x< -2\\x>-\dfrac{6}{5}\end{matrix}\right.\Leftrightarrow x\in\varnothing\)
Vậy: HSĐB trên các khoảng \(\left(-\infty;-2\right);\left(-\dfrac{6}{5};+\infty\right)\)
HSNB trên khoảng \(\left(-2;-\dfrac{6}{5}\right)\)
tìm x,y thuộc z:
\(a,\left(x+3\right)\left(y+2\right)=1\)
\(b,\left(x-1\right)\left(x+y\right)=33\)
\(c,\left(2x-5\right)\left(y-6\right)=17\)
\(d,3x+4y-xy=16\)
GIÚP MIK VS, MIK CẦN GẤP LẮM Ạ
\(a,\left(x+3\right)\left(y+2\right)=1\)
=> x+3 và y+2 thuộc UC(1)={1; -1}
x+3 | 1 | -1 |
x | -2 | -4 |
y+2 | 1 | -1 |
y | -1 | -3 |
Vậy x=-2; y=-4
x=-1; y=-4
Câu sau tương tự
\(a,\left(x+3\right)\left(y+2\right)=1\)
Th1 : \(\hept{\begin{cases}x+3=1\\y+2=1\end{cases}\Rightarrow\hept{\begin{cases}x=-2\\y=-1\end{cases}}}\)
Th2 : \(\hept{\begin{cases}x+3=-1\\y+2=-1\end{cases}\Rightarrow\hept{\begin{cases}x=-4\\y=-3\end{cases}}}\)
KL : \(\left\{\left(x=-2;y=-1\right);\left(x=-4;y=-3\right)\right\}\)
\(d,3x+4y-xy=16\)
\(=3x-xy+4y-12=4\)
\(\Rightarrow-x\left(y-3\right)+4\left(y-3\right)=4\)
\(\Rightarrow\left(y-3\right)\left(4-x\right)=4\)
Chia các trường hợp như câu a của chị ra em nhé
vì \(\left(x+3\right)\left(y+2\right)=1\)
\(\Rightarrow\left(x+3\right)\text{và}\left(y+2\right)=1\)
\(x+3=1\) \(y+2=1\)
\(x=1-3\) \(y=1-2\)
\(x=-2\) \(y=-1\)