\(\left\{{}\begin{matrix}x^2+3y^2-4xy-x+3y=0\\4xy+3x+2y=-2\end{matrix}\right.\)giải hệ pt sau
Giải hệ pt
a.\(\left\{{}\begin{matrix}5x^2y-4xy^2+3y^2-2\left(x+y\right)=0\\xy\left(x^2+y^2\right)+2=\left(x+y\right)^2\end{matrix}\right.\)
b.\(\left\{{}\begin{matrix}x+\dfrac{X+3y}{x^2+y^2}=3\\y-\dfrac{y-3x}{x^2+y^2}=0\end{matrix}\right.\)
giải hệ pt:
\(\left\{{}\begin{matrix}5x^2y-4xy^2+3y^3=2x+2y\\xy\left(x^2+y^2\right)+2=\left(x+y\right)^2\end{matrix}\right.\)
Giải các hệ phương trình sau:
a) \(\left\{{}\begin{matrix}4x^2-4xy-14x-3y^2+y+10=0\\5\sqrt{xy}+2x+2y=6\sqrt{y}-8\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}2x^4+3x^2y+4x^2-2y^2+3y+2=0\\\sqrt{x\left(y-1\right)}+2y+2\sqrt{y-1}=3x+2\sqrt{x}+2\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}x^6+3x^2-y^3-6y^2-15y-14=0\\\sqrt{xy+2x-y-2}+6x-2y=10\end{matrix}\right.\)
d) \(\left\{{}\begin{matrix}xy+x+y=x^2-2y^2\\x\sqrt{2y}-y\sqrt{x-1}=2x-2y\end{matrix}\right.\)
giải hệ pt :
a,\(\left\{{}\begin{matrix}x^3y\left(1+y\right)+x^2y^2\left(2+y\right)+xy^3-30=0\\x^2y+x\left(1+y+y^2\right)+y-11=0\end{matrix}\right.\)
b,\(\left\{{}\begin{matrix}xy^2-2y+3x^2=0\\y^2+x^2y+2x=0\end{matrix}\right.\)
c,\(\left\{{}\begin{matrix}3xy+2y=5\\2xy\left(x+y\right)+y^2=5\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x^3y^2+x^2y^3+x^3y+2x^2y^2+xy^3-30=0\\x^2y+xy^2+xy+x+y-11=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2y^2\left(x+y\right)+xy\left(x+y\right)^2-30=0\\xy\left(x+y\right)+xy+x+y-11=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy\left(x+y\right)\left[xy+x+y\right]-30=0\\xy\left(x+y\right)+xy+x+y-11=0\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}xy\left(x+y\right)=u\\xy+x+y=v\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}uv-30=0\\u+v-11=0\end{matrix}\right.\) \(\Rightarrow\left(u;v\right)=\left(6;5\right);\left(5;6\right)\)
TH1: \(\left\{{}\begin{matrix}xy\left(x+y\right)=6\\xy+x+y=5\end{matrix}\right.\)
Theo Viet đảo \(\Rightarrow\left\{{}\begin{matrix}x+y=3\\xy=2\end{matrix}\right.\) \(\Rightarrow\left(x;y\right)=\left(1;2\right);\left(2;1\right)\)hoặc \(\left\{{}\begin{matrix}x+y=2\\xy=3\end{matrix}\right.\)(vô nghiệm)
TH2: \(\left\{{}\begin{matrix}xy\left(x+y\right)=5\\xy+x+y=6\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x+y=5\\xy=1\end{matrix}\right.\) \(\Rightarrow...\) hoặc \(\left\{{}\begin{matrix}x+y=1\\xy=5\end{matrix}\right.\) (vô nghiệm)
2 câu dưới hình như em hỏi rồi?
giải hệ
\(\left\{{}\begin{matrix}5x^2y-4xy^2+3y^3-2\left(x+y\right)=0\\xy\left(x^2+y^2\right)+2=\left(x+y\right)^2\end{matrix}\right.\)
Viết lại (2)
\(xy\left(x^2+y^2\right)+2-\left(x+y\right)^2=0\)
\(\Leftrightarrow xy\left(x+y\right)^2-2x^2y^2+2-\left(x+y\right)^2=0\)
\(\Leftrightarrow\left(x+y\right)^2\left(xy-1\right)-2\left(x^2y^2-1\right)=0\)
\(\Leftrightarrow\left(xy-1\right)\left[\left(x+y\right)^2-2\left(xy+1\right)\right]=0\)
\(\Leftrightarrow\left(xy-1\right)\left(x^2+y^2-2\right)=0\)
- TH1: \(xy=1\)
\(\left(1\right)\Rightarrow5x-4y+3y^3-2\left(x+y\right)=0\)
\(\Leftrightarrow3x-6y+3y^3=0\)
\(\Leftrightarrow\dfrac{3}{y}-6y+3y^3=0\)
Đến đây dễ rồi nhé.
- TH2: \(x^2+y^2=2\)
\(\left(1\right)\Rightarrow5x^2y-4xy^2+3y^3-\left(x^2+y^2\right)\left(x+y\right)=0\)
\(\Leftrightarrow-x^3+2y^3+4x^2y-5xy^2=0\)
\(\Leftrightarrow\left(x-y\right)^2\left(x-2y\right)=0\)
Đến đây dễ rồi nhé.
giải hệ
\(\left\{{}\begin{matrix}x^2+y^2=2\\3y^2+4xy+x+2y=10\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x^2+y^2=2\left(1\right)\\3y^2+4xy+x+2y=10\left(2\right)\end{matrix}\right.\)
Lấy \(\left(1\right)+\left(2\right)\Leftrightarrow x^2+4xy+4y^2+x+2y=12\)
\(\Leftrightarrow\left(x+2y\right)^2+\left(x+2y\right)-12=0\)
\(\Leftrightarrow\left(x+2y-3\right)\left(x+2y+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2y-3=0\\x+2y+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3-2y\\x=-2y-4\end{matrix}\right.\)
Với \(x=3-2y\) :
\(\left(1\right)\Leftrightarrow y^2+\left(3-2y\right)^2=2\)
\(\Leftrightarrow5y^2-12y+7=0\)
\(\Leftrightarrow\left(y-1\right)\left(5y-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=1\\y=\frac{7}{5}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=\frac{1}{5}\end{matrix}\right.\)
Với \(x=-2y-4\) :
\(\left(1\right)\Leftrightarrow y^2+\left(-2y-4\right)^2=2\)
\(\Leftrightarrow5y^2+16y+14=0\)
\(\Delta'=8-60=-62< 0\)
\(\Rightarrow PTVN\)
Vậy \(\left[{}\begin{matrix}\left(x;y\right)=\left(1;1\right)\\\left(x;y\right)=\left(\frac{1}{5};\frac{7}{5}\right)\end{matrix}\right.\)
Gọi pt đầu là (1); pt sau là (2).
(2)\(\Leftrightarrow3y^2+\left(4x+2\right)y+x-10=0\)
Coi đây là pt bậc 2 ẩn y với x là tham số.
\(\Delta=\left(4x+2\right)^2-12\left(x-10\right)\)
\(=16x^2+4x+124>0\forall x\)
Pt có 2 ng0 pb:
\(y_1=\frac{-4x-2+\sqrt{16x^2+4x+124}}{6}\);\(y_2=\frac{-4x-2-\sqrt{16x^2+4x+124}}{6}\)
-Xét y1:
Thay vào (1):\(x^2+\frac{\left[\sqrt{16x^2+4x+124}-\left(4x+2\right)\right]^2}{36}-2=0\)
\(\Leftrightarrow64x^2+20x+126=\left(16x+8\right)\sqrt{4x^2+x+31}\)(Ở bước này bạn nhân với 36 rồi biến đổi cho gọn).
Đến đây dùng máy tính giải hoặc bình phương lên rồi giải.
Làm ttự với y2 để tìm x,y.
Nguyễn Việt Lâm Nhờ bn làm cách khác gọn hơn.
giải hệ pt :
a, \(\left\{{}\begin{matrix}3y=\dfrac{y^2+2}{x^2}\\3x=\dfrac{x^2+2}{y^2}\end{matrix}\right.\)
b, \(\left\{{}\begin{matrix}x^2y+xy^2+x-5y=0\\2xy+y^2-5y+1=0\end{matrix}\right.\)
c, \(\left\{{}\begin{matrix}x^2+y^2+xy+2y+x=2\\2x^2-y^2-2y-2=0\end{matrix}\right.\)
ý a ở đây bn https://hoc247.net/hoi-dap/toan-10/giai-he-pt-3x-x-2-2-y-2-va-3y-y-2-2-x-2-faq371128.html
b.
Với \(xy=0\) không là nghiệm
Với \(xy\ne0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\left(y^2+1\right)=y\left(5-x^2\right)\\y^2+1=y\left(5-2x\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{y^2+1}{y}=\dfrac{5-x^2}{x}\\\dfrac{y^2+1}{y}=5-2x\end{matrix}\right.\)
\(\Rightarrow\dfrac{5-x^2}{x}=5-2x\)
\(\Leftrightarrow5-x^2=5x-2x^2\)
\(\Leftrightarrow...\)
c.
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+x\left(y+1\right)+\left(y+1\right)^2=3\\2x^2-\left(y+1\right)^2=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+x\left(y+1\right)+\left(y+1\right)^2=3\\6x^2-3\left(y+1\right)^2=3\end{matrix}\right.\)
\(\Rightarrow5x^2-x\left(y+1\right)-4\left(y+1\right)^2=0\)
\(\Leftrightarrow\left(x-y-1\right)\left(5x+4\left(y+1\right)\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=x-1\\y=-\dfrac{5x+4}{4}\end{matrix}\right.\)
Thế vào 1 trong 2 pt ban đầu...
Giải hệ pt sau = phương pháp thế:
a, \(\left\{{}\begin{matrix}\dfrac{x}{2}-\dfrac{y}{3}=1\\5x-8y=3\end{matrix}\right.\)
b, \(\left\{{}\begin{matrix}3x+2y=2\\6x-3y=18\end{matrix}\right.\)
a: \(\left\{{}\begin{matrix}\dfrac{x}{2}-\dfrac{y}{3}=1\\5x-8y=3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}+1\\5x-8y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}y+2\\5\cdot\left(\dfrac{2}{3}y+2\right)-8y=3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{2}{3}y+2\\\dfrac{10}{3}y+10-8y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{14}{3}y=-7\\x=\dfrac{2}{3}y+2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=7:\dfrac{14}{3}=7\cdot\dfrac{3}{14}=\dfrac{3}{2}\\x=\dfrac{2}{3}\cdot\dfrac{3}{2}+2=1+2=3\end{matrix}\right.\)
b: \(\left\{{}\begin{matrix}3x+2y=2\\6x-3y=18\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3x=2-2y\\2\cdot3x-3y=18\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3x=2-2y\\2\left(2-2y\right)-3y=18\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4-7y=18\\3x=2-2y\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}7y=-14\\3x=2-2y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-2\\3x=2-2\cdot\left(-2\right)=6\end{matrix}\right.\)
=>x=2 và y=-2
1.
a, Giải pt: \(\frac{26x+5}{\sqrt{x^2+30}}+2\sqrt{26x+5}=3\sqrt{x^2+30}\)
b, Giải hệ pt: \(\left\{{}\begin{matrix}x^2+y^2=2\\\left(x+2y\right)\left(2+3y^2+4xy\right)=27\end{matrix}\right.\)