Hệ phương trình đối xứng

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lưu Thị Thảo Ly

giải hệ

\(\left\{{}\begin{matrix}5x^2y-4xy^2+3y^3-2\left(x+y\right)=0\\xy\left(x^2+y^2\right)+2=\left(x+y\right)^2\end{matrix}\right.\)

TFBoys
17 tháng 2 2018 lúc 23:42

Viết lại (2)

\(xy\left(x^2+y^2\right)+2-\left(x+y\right)^2=0\)

\(\Leftrightarrow xy\left(x+y\right)^2-2x^2y^2+2-\left(x+y\right)^2=0\)

\(\Leftrightarrow\left(x+y\right)^2\left(xy-1\right)-2\left(x^2y^2-1\right)=0\)

\(\Leftrightarrow\left(xy-1\right)\left[\left(x+y\right)^2-2\left(xy+1\right)\right]=0\)

\(\Leftrightarrow\left(xy-1\right)\left(x^2+y^2-2\right)=0\)

- TH1: \(xy=1\)

\(\left(1\right)\Rightarrow5x-4y+3y^3-2\left(x+y\right)=0\)

\(\Leftrightarrow3x-6y+3y^3=0\)

\(\Leftrightarrow\dfrac{3}{y}-6y+3y^3=0\)

Đến đây dễ rồi nhé.

- TH2: \(x^2+y^2=2\)

\(\left(1\right)\Rightarrow5x^2y-4xy^2+3y^3-\left(x^2+y^2\right)\left(x+y\right)=0\)

\(\Leftrightarrow-x^3+2y^3+4x^2y-5xy^2=0\)

\(\Leftrightarrow\left(x-y\right)^2\left(x-2y\right)=0\)

Đến đây dễ rồi nhé.


Các câu hỏi tương tự
Phương
Xem chi tiết
Nguyễn Khánh Linh
Xem chi tiết
Lê Mai
Xem chi tiết
Van Han
Xem chi tiết
Anh Khương Vũ Phương
Xem chi tiết
Anh Khương Vũ Phương
Xem chi tiết
Anh Khương Vũ Phương
Xem chi tiết
Xuân Huy
Xem chi tiết
Nguyễn Đình Hữu
Xem chi tiết