giải hệ đối xứng loại I
17) \(\left\{{}\begin{matrix}x^3+y^3+x^3y^3=17\\x+y+xy=5\end{matrix}\right.\)
18) \(\left\{{}\begin{matrix}x^3+y^3=2\\xy\left(x+y\right)=2\end{matrix}\right.\)
19) \(\left\{{}\begin{matrix}x^4+y^4+x^2y^2=481\\x^2+y^2+xy=37\end{matrix}\right.\)
giúp mình với ạ , câu nào cũng được ạ !!
1.
\(\left\{{}\begin{matrix}x^3+y^3+x^3y^3=17\\x+y+xy=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^3-3xy\left(x+y\right)+x^3y^3=17\\x+y+xy=5\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x+y=a\\xy=b\end{matrix}\right.\left(a^2\ge4b\right)\)
Hệ phương trình trở thành \(\left\{{}\begin{matrix}a^3-3ab+b^3=17\\a+b=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(a+b\right)^3-3ab\left(a+b+1\right)=17\\a+b=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}ab=6\\a+b=5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}a=2;b=3\left(l\right)\\a=3;b=2\end{matrix}\right.\)
\(\left\{{}\begin{matrix}a=3\\b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=3\\xy=2\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\\\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\end{matrix}\right.\)
2.
\(\left\{{}\begin{matrix}x^3+y^3=2\\xy\left(x+y\right)=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^3-3xy\left(x+y\right)=2\\xy\left(x+y\right)=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^3-6=2\\xy\left(x+y\right)=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^3=8\\xy\left(x+y\right)=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=2\\xy\left(x+y\right)=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=2\\xy=1\end{matrix}\right.\)
\(\Leftrightarrow x=y=1\)
3.
\(\left\{{}\begin{matrix}x^4+y^4+x^2y^2=481\\x^2+y^2+xy=37\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x^2+y^2\right)^2-x^2y^2=481\\x^2+y^2+xy=37\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x^2+y^2=a\\xy=b\end{matrix}\right.\)
Hệ phương trình trở thành \(\left\{{}\begin{matrix}a^2-b^2=481\\a+b=37\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(37-b\right)^2-b^2=481\\a=37-b\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}74b=888\\a=37-b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=12\\a=25\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy=12\\x^2+y^2=25\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2xy=24\\x^2+y^2=25\end{matrix}\right.\)
\(\Rightarrow\left(x+y\right)^2=49\)
\(\Leftrightarrow x+y=\pm7\)
TH1: \(\left\{{}\begin{matrix}xy=12\\x+y=7\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\\\left\{{}\begin{matrix}x=4\\y=3\end{matrix}\right.\end{matrix}\right.\)
TH2: \(\left\{{}\begin{matrix}xy=12\\x+y=-7\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=-3\\y=-4\end{matrix}\right.\\\left\{{}\begin{matrix}x=-4\\y=-3\end{matrix}\right.\end{matrix}\right.\)