1.(X+1)×(X+3)–X×(X+2)=7
2.2×X×(3×X+5)–X×(6×X–1)=33
1) 2³ .x -5² x = 2( 5² + 2² ) -33. 2) 15÷ ( x +2) = (3³ +3) ÷1
3) 20÷ (x +1) = (5² +1 ) ÷13. 4) 320÷ ( x -1 ) = (5³ - 5² ) ÷4 +15
5) 240 ÷ ( x -5 ) = 2² .5² -20. 6) 70 ÷ ( x -3) = ( 3⁴ -1) ÷ 4 - 10
Giúp mình với mình Tối nay mình đi học rồi
1) \(2^3\times x-5^2\times x=2\times\left(5^2+2^2\right)-33\)
\(x\times\left(2^3-5^2\right)=2\times\left(25+4\right)-33\)
\(x\times\left(8-25\right)=2\times29-33\)
\(x\times-17=25\)
\(x=-\dfrac{25}{17}\)
2) \(15\div\left(x+2\right)=\left(3^3+3\right)\div1\)
\(15\div\left(x+2\right)=\left(27+3\right)\div1\)
\(15\div\left(x+2\right)=30\div1\)
\(15\div\left(x+2\right)=30\)
\(x+2=\dfrac{1}{2}\)
\(x=-\dfrac{3}{2}\)
3) \(20\div\left(x+1\right)=\left(5^2+1\right)\div13\)
\(20\div\left(x+1\right)=\left(25+1\right)\div13\)
\(20\div\left(x+1\right)=26\div13\)
\(20\div\left(x+1\right)=2\)
\(x+1=20\div2\)
\(x+1=10\)
\(x=9\)
4) \(320\div\left(x-1\right)=\left(5^3-5^2\right)\div4+15\)
\(320\div\left(x-1\right)=\left(125-25\right)\div4+15\)
\(320\div\left(x-1\right)=100\div4+15\)
\(320\div\left(x-1\right)=25+15\)
\(320\div\left(x-1\right)=40\)
\(x-1=8\)
\(x=9\)
5) \(240\div\left(x-5\right)=2^2\times5^2-20\)
\(240\div\left(x-5\right)=4\times25-20\)
\(240\div\left(x-5\right)=100-20\)
\(240\div\left(x-5\right)=80\)
\(x-5=30\)
\(x=35\)
6) \(70\div\left(x-3\right)=\left(3^4-1\right)\div4-10\)
\(70\div\left(x-3\right)=\left(81-1\right)\div4-10\)
\(70\div\left(x-3\right)=80\div4-10\)
\(70\div\left(x-3\right)=20-10\)
\(70\div\left(x-3\right)=10\)
\(x-3=7\)
\(x=10\)
1) x+1/3=-7/3 4) 2/3+x=7/3
2) 1/8-x=3/8 5) x--7/3=5/3
3) x-4/5=6/5
1, \(x=-\dfrac{7}{3}-\dfrac{1}{3}=-\dfrac{8}{3}\)
2, \(x=\dfrac{1}{8}-\dfrac{3}{8}=-\dfrac{2}{8}=-\dfrac{1}{4}\)
3, \(x=\dfrac{6}{5}+\dfrac{4}{5}=\dfrac{10}{5}=2\)
4, \(x=\dfrac{7}{3}-\dfrac{2}{3}=\dfrac{5}{3}\)
5, \(x+\dfrac{7}{3}=\dfrac{5}{3}\Leftrightarrow x=\dfrac{5}{3}-\dfrac{7}{3}=-\dfrac{2}{3}\)
\(=x+\dfrac{1}{3}=\dfrac{-7}{3}\Leftrightarrow x=\dfrac{-8}{3}\)
\(=\dfrac{1}{8}-x=\dfrac{3}{8}\Leftrightarrow x=\dfrac{-1}{4}\)
\(=x-\dfrac{4}{5}=\dfrac{6}{5}\Leftrightarrow x=2\)
\(=\dfrac{2}{3}+x=\dfrac{7}{3}\Leftrightarrow x=\dfrac{5}{3}\)
\(=x-\dfrac{-7}{3}=\dfrac{5}{3}\Leftrightarrow x=\dfrac{-2}{3}\)
1)x=-7/3-1/3
x=-8/3
2)x=1/8-3/8
x=-1/4
3)x=6/5+4/5
x=2
4)x=7/3-2/3
x=5/3
5)x=5/3+(-7/3)
x=-2/3
1.giải phương trình :
1)1 + 2/x-1 + 1/x+3=x^2+2x-7/x^2+2x-3
2)x/x^2+5x+6=2/x^2+3x+2 (x=3)
3)1/x^2+9x+20 - 1/x^2+8x+12=x^2-2x-33/x^2+8x+15 (x=-5,7)
4)x+5/3x-6 - 1/2=2x-3/2x-4 (x=25/7)
5)x-1/x^3+1 + 2x+3/x^2-x+1=2x+4/x+1 - 2(x=0)
1/ \(1+\frac{2}{x-1}+\frac{1}{x+3}=\frac{x^2+2x-7}{x^2+2x-3}\)
ĐKXĐ: \(\hept{\begin{cases}x-1\ne0\\x+3\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ne-3\end{cases}}\)
<=> \(1+\frac{2\left(x+3\right)+x-1}{\left(x-1\right)\left(x+3\right)}=\frac{x^2+2x-3-5}{x^2+2x-3}\)
<=> \(1+\frac{2x+6+x-1}{x^2+2x-3}=1-\frac{5}{x^2+2x-3}\)
<=> \(\frac{3x+5}{x^2+2x-3}+\frac{5}{x^2+2x-3}=1-1\)
<=> \(\frac{3x+5}{x^2+2x-3}+\frac{5}{x^2+2x-3}=0\)
<=> \(\frac{3x+10}{x^2+2x-3}=0\)
<=> \(3x+10=0\)
<=> \(x=-\frac{10}{3}\)
bài 1:
1) 20 - 2(x+4)= 4
2) 30 - [ 4(x-2)+ 15]= 3
3) 14 ⋮(2.x + 3)
4) (3x - 24).7 = 2.73
5) (x + 1)3 = 27
6) (2x - 6).47=49
7) (10 + 2x) : 42011 = 42013
8) [(8x - 12) :4].33 = 36
9) 6⋮(x - 1)
10) (x + 5)⋮(x + 2)
mong mn giúp mình gấp với ạ ^^
1: Ta có: \(20-2\left(x+4\right)=4\)
\(\Leftrightarrow2\left(x+4\right)=16\)
\(\Leftrightarrow x+4=8\)
hay x=4
5: Ta có: \(\left(x+1\right)^3=27\)
\(\Leftrightarrow x+1=3\)
hay x=2
giupsmik giải đề này nhanh đc ko ạ tìm x
6-2(x-1)=4 2*(x-2)+1=7 (2*x-3)+4=9 (3*x-2)-1=3
2*(6-x)+1=5 20+(x-2)=25 (10-2:x)-1=3
3*(4+2*x)-1=8 (x+2)-5=7 (3+2*x)-1=2
\(6-2\left(x-1\right)=4\)
\(\Rightarrow2\left(x-1\right)=6-4\)
\(\Rightarrow2\left(x-1\right)=2\)
\(\Rightarrow x-1=1\)
\(\Rightarrow x=1+1=2\)
________________
\(2\cdot\left(x-2\right)+1=7\)
\(\Rightarrow2\cdot\left(x-2\right)=7-1\)
\(\Rightarrow2\cdot\left(x-2\right)=6\)
\(\Rightarrow x-2=3\)
\(\Rightarrow x=3+2=5\)
_______________
\(\left(2\cdot x-3\right)+4=9\)
\(\Rightarrow2\cdot x-3=5\)
\(\Rightarrow2\cdot x=3+5\)
\(\Rightarrow2\cdot x=8\)
\(\Rightarrow x=\dfrac{8}{2}=4\)
________________
\(\left(3\cdot x-2\right)-1=3\)
\(\Rightarrow3\cdot x-2=3+1\)
\(\Rightarrow3\cdot x-2=4\)
\(\Rightarrow3\cdot x=6\)
\(\Rightarrow x=\dfrac{6}{3}=2\)
a: =>2(x-1)=2
=>x-1=1
=>x=2
b: =>2(x-2)=6
=>x-2=3
=>x=5
c; =>2x-3=5
=>2x=8
=>x=4
d: =>3x-2=4
=>3x=6
=>x=2
e: =>2(6-x)=4
=>6-x=2
=>x=4
f: =>x-2=5
=>x=7
g: =>10-2x=4
=>2x=6
=>x=3
h: =>2x+4=3
=>2x=-1
=>x=-1/2
j: =>x+2=12
=>x=10
l: =>2x+3=3
=>2x=0
=>x=0
\(6-2\left(x-1\right)=4\\ 2\left(x-1\right)=6-4=2\\ x-1=\dfrac{2}{2}=1\\ x=1+1=2\)
\(2\left(6-x\right)+1=5\\ 2\left(6-x\right)=5-1=4\\ 6-x=\dfrac{4}{2}=2\\ x=6-2=4\)
\(\left(4+2x\right)-1=8\\ 3\left(4+2x\right)=8+1=9\\ 4+2x=\dfrac{9}{3}=3\\ 2x=3-4=-1\\ x=-\dfrac{1}{2}\)
\(2\left(x-2\right)+1=7\\ 2\left(x-2\right)=7-1=6\\ x-2=\dfrac{6}{2}=3\\ x=3+2=5\)
\(20+\left(x-2\right)=25\\ x-2=25-20=5\\ x=5+2=7\)
\(\left(x+2\right)-5=7\\ x+2=7+5=12\\ x=12-2=10\)
\(\left(2x-3\right)+4=9\\ 2x-3=9-4=5\\ 2x=5+3=8\\ x=\dfrac{8}{2}=4\)
\(\left(10-\dfrac{2}{x}\right)-1=3\\ 10-\dfrac{2}{x}=3+1=4\\ \dfrac{2}{x}=10-4=6\\ x=\dfrac{2}{6}=\dfrac{1}{3}\)
\(\left(3+2x\right)-1=3\\ 3+2x=3+1=4\\ 2x=4-3=1\\ x=\dfrac{1}{2}\)
\(\left(3x-2\right)-1=3\\ 3x-2=3+1=4\\ 3x=4+2=6\\ x=\dfrac{6}{3}=2\)
Tìm x biết :
\(x+\dfrac{1}{2}=\dfrac{33}{4}\)
\(\dfrac{5}{6}-x=\dfrac{1}{3}\)
\(x+\dfrac{4}{5}=\dfrac{-2}{3}\)
\(x+\dfrac{1}{2}=\dfrac{33}{4}\\ \Rightarrow x=\dfrac{33}{4}-\dfrac{1}{2}\\ \Rightarrow x=\dfrac{31}{4}\\ \dfrac{5}{6}-x=\dfrac{1}{3}\\ \Rightarrow x=\dfrac{5}{6}-\dfrac{1}{3}\\ \Rightarrow x=\dfrac{1}{2}\\ x+\dfrac{4}{5}=\dfrac{-2}{3}\\ \Rightarrow x=\dfrac{-2}{3}-\dfrac{4}{5}\\ \Rightarrow x=\dfrac{-22}{15}\)
\(\dfrac{1}{2}\) . \(x\) + \(\dfrac{3}{5}\) . (\(x\) - 2) =3
3 - (\(\dfrac{1}{6}\) - \(x\)) . \(\dfrac{2}{3}\) = \(\dfrac{2}{3}\)
`@` `\text {Ans}`
`\downarrow`
`1/2*x + 3/5*(x - 2) = 3`
`=> 1/2*x + 3/5*x - 3/5*2 = 3`
`=> 1/2x + 3/5x - 6/5 = 3`
`=> (1/2 + 3/5)x - 6/5 = 3`
`=> 11/10x - 6/5 = 3`
`=> 11/10x = 3 + 6/5`
`=> 11/10x =21/5`
`=> x = 21/5 \div 11/10`
`=> x = 42/11`
Vậy, `x = 42/11`
____
`3 - (1/6 - x)*2/3 = 2/3`
`=> (1/6 - x)*2/3 = 3 - 2/3`
`=> (1/6 - x)*2/3 = 7/3`
`=> 1/6 - x = 7/3 \div 2/3`
`=> 1/6 - x=7/2`
`=> x = 1/6 - 7/2`
`=> x = -10/3`
Vậy, `x = -10/3.`
\(\dfrac{1}{2}\cdot x+\dfrac{3}{5}\left(x-2\right)=3\\ \dfrac{1}{2}\cdot x+\dfrac{3}{5}\cdot x-\dfrac{13}{5}=3\\ \left(\dfrac{1}{2}+\dfrac{3}{5}\right)x-\dfrac{13}{5}=3\\ \dfrac{11}{10}x-\dfrac{13}{5}=3\\ \dfrac{11}{10}x=\dfrac{28}{5}\\ x=\dfrac{28}{5}:\dfrac{11}{10}\\ x=\dfrac{28}{11}\\ 3-\left(\dfrac{1}{6}-x\right)\cdot\dfrac{2}{3}=\dfrac{2}{3}\\ \left(\dfrac{1}{6}-x\right)\cdot\dfrac{2}{3}=3-\dfrac{2}{3}\\ \left(\dfrac{1}{6}-x\right)\cdot\dfrac{2}{3}=\dfrac{7}{3}\\ \dfrac{1}{6}-x=\dfrac{7}{3}:\dfrac{2}{3}\\ \dfrac{1}{6}-x=\dfrac{7}{2}\\ x=\dfrac{1}{6}-\dfrac{7}{2}\\ x=-\dfrac{10}{3}\)
1. tìm GTNN của A= x(x+2)(x+4)(x+6)+8
2. tìm GTLN của B=5+(1-x)(x+2)(x+3)(x+6)3
3.tìm GTNN của C=(x+3)4 + (x-7)4
4. Cho x>0. Tìm GTNN của P=\(\dfrac{4x^2+1}{2x}\)
1.
$x(x+2)(x+4)(x+6)+8$
$=x(x+6)(x+2)(x+4)+8=(x^2+6x)(x^2+6x+8)+8$
$=a(a+8)+8$ (đặt $x^2+6x=a$)
$=a^2+8a+8=(a+4)^2-8=(x^2+6x+4)^2-8\geq -8$
Vậy $A_{\min}=-8$ khi $x^2+6x+4=0\Leftrightarrow x=-3\pm \sqrt{5}$
2.
$B=5+(1-x)(x+2)(x+3)(x+6)=5-(x-1)(x+6)(x+2)(x+3)$
$=5-(x^2+5x-6)(x^2+5x+6)$
$=5-[(x^2+5x)^2-6^2]$
$=41-(x^2+5x)^2\leq 41$
Vậy $B_{\max}=41$. Giá trị này đạt tại $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$
3.
Đặt $x+3=a; 7-x=b$ thì $a+b=10$
$C=a^4+b^4$
Áp dụng BĐT Bunhiacopxky:
$(a^4+b^4)(1+1)\geq (a^2+b^2)^2$
$\Rightarrow C\geq \frac{(a^2+b^2)^2}{2}$
$(a^2+b^2)(1+1)\geq (a+b)^2=100$
$\Rightarrow a^2+b^2\geq 50$
$\Rightarrow C\geq \frac{50^2}{2}=1250$
Vậy $C_{\min}=1250$
Giá trị này đạt tại $a=b=5\Leftrightarrow x=2$
tìm số nguyên x
5/x+1+4/x+1=3/-13
-x+2+2x+3+x+1/4+2x+1/6=8/3
3/2x+1+10/4x+2-6/6x+2=12/26
giúp mình mik đang vội]
\(\dfrac{5}{x}+1+\dfrac{4}{x}+1=\dfrac{3}{-13}\\ \Rightarrow\dfrac{9}{x}+2=-\dfrac{3}{13}\\ \Rightarrow\dfrac{9}{x}=-\dfrac{59}{13}\\ \Rightarrow x=-\dfrac{207}{59}\)
a. \(\dfrac{5}{x+1}+\dfrac{4}{x+1}=\dfrac{-3}{13}\)
ĐKXĐ: x ≠ -1
⇔ \(\dfrac{65}{13\left(x+1\right)}+\dfrac{52}{13\left(x+1\right)}=\dfrac{-3\left(x+1\right)}{13\left(x+1\right)}\)
⇔ 65 + 52 = -3(x + 1)
⇔ 117 = -3x - 3
⇔ 117 + 3 = -3x
⇔ 120 = -3x
⇔ x = \(\dfrac{120}{-3}=-40\) (TM)
b. -x + 2 + 2x + 3 + x + \(\dfrac{1}{4}\) + 2x + \(\dfrac{1}{6}\) = \(\dfrac{8}{3}\)
⇔ -x + 2x + x + 2x = \(\dfrac{8}{3}-\dfrac{1}{6}-\dfrac{1}{4}-3-2\)
⇔ 4x = -2,75
⇔ x = \(\dfrac{-2,75}{4}=\dfrac{-11}{16}\)
c. \(\dfrac{3}{2x+1}+\dfrac{10}{4x+2}-\dfrac{6}{6x+2}\) = \(\dfrac{12}{26}\)
⇔ \(\dfrac{3}{2x+1}+\dfrac{10}{2\left(2x+1\right)}-\dfrac{6}{2\left(3x+1\right)}=\dfrac{12}{26}\)
⇔ \(\dfrac{312\left(3x+1\right)}{104\left(2x+1\right)\left(3x+1\right)}\) + \(\dfrac{520\left(3x+1\right)}{104\left(2x+1\right)\left(3x+1\right)}\) - \(\dfrac{312\left(2x+1\right)}{104\left(2x+1\right)\left(3x+1\right)}\)
= \(\dfrac{48\left(2x+1\right)\left(3x+1\right)}{104\left(2x+1\right)\left(3x+1\right)}\)
⇔ 312(3x +1) + 520(3x + 1) - 312(2x + 1) = 48(2x + 1)(3x + 1)
⇔ 936x + 312 + 1560x + 520 - 624x - 312 = (96x + 48)(3x + 1)
⇔ 936x + 312 + 1560x + 520 - 624x - 312 = 288x2 + 96x + 144x + 48
⇔ 936x + 1560x - 624x - 96x - 144x - 288x2 = 48 - 312 - 520 + 312
⇔ 1632x - 288x2 = -472
⇔ -288x2 + 1632x + 472 = 0 (Tự giải tiếp, dùng phương pháp tách hạng tử)
⇔ x = 5,942459684 \(\approx\) 6
c: Ta có: \(\dfrac{3}{2x+1}+\dfrac{10}{4x+2}-\dfrac{6}{6x+3}=\dfrac{12}{26}\)
\(\Leftrightarrow\dfrac{3}{2x+1}+\dfrac{5}{2x+1}-\dfrac{2}{2x+1}=\dfrac{6}{13}\)
\(\Leftrightarrow2x+1=13\)
hay x=6