Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Chuột yêu Gạo
Xem chi tiết
𝓓𝓾𝔂 𝓐𝓷𝓱
24 tháng 2 2021 lúc 20:32

a) Ta có: \(f\left(x\right)=x\left(x^2+x-2\right)=x\left(x-1\right)\left(x+2\right)\)

  Lập bảng xét dấu 

undefined

Vậy để \(f\left(x\right)>0\) \(\Leftrightarrow x\in\left(-2;0\right)\cup\left(1;+\infty\right)\)

b) Ta có: \(\left(3x^2+7x-6\right)\left(5x+8\right)^2\le0\)

\(\Leftrightarrow3x^2+7x-6\le0\) \(\Leftrightarrow-3\le x\le\dfrac{2}{3}\)

  Vậy \(x\in\left[-3;\dfrac{2}{3}\right]\)  

Nguyễn Thị Thanh Trang
Xem chi tiết
Nguyễn Thị Thanh Trang
Xem chi tiết
Minh Nhật Dương
Xem chi tiết
Đỗ Tuệ Lâm
13 tháng 2 2022 lúc 7:40

bài nó dàiiiiiiii , khôg hiểu chỗ nèo hỏi lại mình hen

\(\dfrac{2x}{3x^2-x+2}-\dfrac{7x}{3x^2+5x+2}=1\)

\(\Leftrightarrow\left(\dfrac{2x}{3x^2-x+2}-\dfrac{7x}{\left(3x+2\right)\left(x+1\right)}\right)=1\)

\(\Leftrightarrow\dfrac{2x\left(3x+2\right)\left(x+1\right)-\left(7x.\left(3x^2-x+2\right)\right)}{\left(3x^2-x+2\right).\left(3x+2\right)\left(x+1\right)}=\dfrac{-15x^3+17x^2-10x}{\left(3x^2-x+2\right)\left(3x+2\right)\left(x+1\right)}\)

 

\(\Leftrightarrow\dfrac{-15x^3+17^2-10x }{\left(3x^2-x+2\right)\left(3x+2\right)\left(x+1\right)}-1=0\)

rồi quy đồng tùm lum từa lưa nữa được như này:

\(\Leftrightarrow\dfrac{-9x^4-27x^3+10x^2-18x-4}{\left(3x^2-x+2\right)\left(3x+2\right)\left(x+1\right)}=0\)

\(\Leftrightarrow-9x^4-27x^3+10x^2-18x-4=0\)

\(\Leftrightarrow x^2+\dfrac{5}{3}.x+\dfrac{25}{26}=0\)

\(\Leftrightarrow x+\left(\dfrac{5}{6}\right)^2=\dfrac{1}{36}\)

Sử dụng công thức bậc 2 hen:

\(\Leftrightarrow x=\dfrac{-5\pm\sqrt{1}}{6}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{-5+\sqrt{1}}{6}\\x_2=\dfrac{-5-\sqrt{1}}{6}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=-\dfrac{2}{3}\\x_2=-1\end{matrix}\right.\)

 

Nguyễn Thị Kim Ngọc
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 10 2020 lúc 10:22

ĐKXĐ: \(x\ge-5\)

\(\Leftrightarrow x^2-8x+16+x+5-6\sqrt{x+5}+9=0\)

\(\Leftrightarrow\left(x-4\right)^2+\left(\sqrt{x+5}-3\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-4=0\\\sqrt{x+5}-3=0\end{matrix}\right.\)

\(\Leftrightarrow x=4\)

Khách vãng lai đã xóa
nguyen ha giang
Xem chi tiết
Duong Thi Nhuong
Xem chi tiết
Chí Cường
13 tháng 5 2017 lúc 16:18

a)\(\left(x-2\right)\left(5-x\right)=7x-\left(x-1\right)\left(3-2x\right)\Leftrightarrow5x-x^2-10+2x=7x-3x+2x^2+3-2x\Leftrightarrow-3x^2+5x-13=0\)\(\Delta=b^2-4ac=25-4.\left(-3\right).\left(-13\right)=-131< 0\)

\(\Rightarrow\)phương trình vô nghiệm

Hưng
Xem chi tiết
Lê Văn Thắng
10 tháng 1 2015 lúc 14:13

Giải

Đặt A = \(\sqrt{x^2+11x-6}-3\sqrt{x+6}\)

      B = \(\sqrt{x^2+3x-2}-3\sqrt{x+2}\)

Theo bài ra ta có A + B = 4  (1)

Mặt khác ta có A2 - B2 = 8x + 32 - 24\(\sqrt{2x-1}\)(2)

Từ (1) ta có A = 4 - B thế vào (2) ta có 16 - 8B + B2 - B2 = 8x + 32 - 24\(\sqrt{2x-1}\)

Hay B + x + 2 - 3\(\sqrt{2x-1}\)= 0\(\Rightarrow\)\(\sqrt{x^2+3x-2}-3\sqrt{x+2}+x+2\) - \(3\sqrt{2x-1}\)\(\Rightarrow\)\(\sqrt{\left(x+2\right)\left(2x-1\right)}\) - \(3\sqrt{2x-1}+\sqrt{x+2}\left(\sqrt{x+2}-3\right)\)= 0

Hay \(\sqrt{2x-1}\left(\sqrt{x+2}-3\right)+\sqrt{x+2}\left(\sqrt{x+2}-3\right)=0\)

\(\Rightarrow\left(\sqrt{x+2}-3\right)\left(\sqrt{2x-1}+\sqrt{x+2}\right)=0\)

\(\Leftrightarrow\sqrt{x+2}-3=0\Leftrightarrow x=7\)

Thử lại x = 7 thỏa mã bài ra. Vậy nghiệm của phương trình la x = 7

Hưng
10 tháng 1 2015 lúc 21:32

câu trả lời hay đấy ,còn cách giải khác không ,giải cho mình nốt các bài còn lại đi

Vũ Nguyễn Diệu Linh
Xem chi tiết
Kirito-Kun
6 tháng 9 2021 lúc 16:18

b. 2 + \(\sqrt{2x-1}=x\)       ĐKXĐ: \(x\ge0,5\)

<=> \(\sqrt{2x-1}\) = x - 2

<=> 2x - 1 = (x - 2)2

<=> 2x - 1 = x2 - 4x + 4

<=> -x2 + 2x + 4x - 4 - 1 = 0

<=> -x2 + 6x - 5 = 0

<=> -x2 + 5x + x - 5 = 0

<=> -(-x2 + 5x + x - 5) = 0

<=> x2 - 5x - x + 5 = 0

<=> x(x - 5) - (x - 5) = 0

<=> (x - 1)(x - 5) = 0

<=> \(\left[{}\begin{matrix}x-1=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=5\end{matrix}\right.\)