\(\text{tìm x}:\)
\(\text{3-4x+24+6x=x+27+3x}\)
cho biểu thức
P=(\(\dfrac{\text{x^3+3x}}{\text{x^3+3x^2+9x+27}}\)+\(\dfrac{\text{3}}{\text{x^2+9}}\)):(\(\dfrac{\text{1}}{\text{x-3}}\)-\(\dfrac{\text{6x}}{\text{x^3-3x^2+9x-27}}\))
rút gọn p
với x>0 thì P không nhận gt nào
Tìm cácgt của x để P nguyên
ĐKXĐ: \(x\ne\pm3\)
\(P=\left[\dfrac{x\left(x+3\right)}{x^2\left(x+3\right)+9\left(x+3\right)}+\dfrac{3}{x^2+9}\right]:\left[\dfrac{1}{x-3}-\dfrac{6x}{x^2\left(x-3\right)+9\left(x-3\right)}\right]\)
\(=\left[\dfrac{x\left(x+3\right)}{\left(x+3\right)\left(x^2+9\right)}+\dfrac{3}{x^2+9}\right]:\left[\dfrac{1}{x-3}-\dfrac{6x}{\left(x-3\right)\left(x^2+9\right)}\right]\)
\(=\dfrac{x+3}{x^2+9}:\dfrac{x^2+9-6x}{\left(x-3\right)\left(x^2+9\right)}=\dfrac{x+3}{x^2+9}.\dfrac{\left(x-3\right)\left(x^2+9\right)}{\left(x-3\right)^2}=\dfrac{x+3}{x-3}\)
Ý 2 mình k hiểu ý bạn lắm
\(P=\dfrac{x+3}{x-3}=\dfrac{x-3+6}{x-3}=1+\dfrac{6}{x-3}\in Z\)
\(\Leftrightarrow\left(x-3\right)\inƯ\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)
Kết hợp vs ĐKXĐ \(\Rightarrow x\in\left\{0;1;2;4;5;6;9\right\}\)
tìm GTNN
C=\(\dfrac{x^6+27}{\text{x}^4-3x^3+6x^2-9x+9}\)
\(C=\dfrac{\left(x^2+3\right)\left(x^4-3x^2+9\right)}{x^4+3x^2-3x^3-9x+3x^2+9}=\dfrac{\left(x^2+3\right)\left(x^4+6x^2+9-9x^2\right)}{\left(x^2+3\right)\left(x^2-3x+3\right)}\\ C=\dfrac{\left(x^2+3\right)^2-9x^2}{x^2-3x+3}=\dfrac{\left(x^2-3x+3\right)\left(x^2+3x+3\right)}{x^2-3x+3}\\ C=x^2+3x+3=\left(x^2+3x+\dfrac{9}{4}\right)+\dfrac{3}{4}=\left(x+\dfrac{3}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Dấu \("="\Leftrightarrow x=-\dfrac{3}{2}\)
3-4x+24+6x=x+27+3x
3 - 4x + 24 + 6x = x + 27 + 3x
⇔ 27 + 2x = 4x + 27
⇔ 2x = 0
⇔ x = 0
3-4x+24+6x=x+27+3x
3+24-27=4x-6x+x+3x
0=2x
<=>2x=0
=> x=0
Ta có: \(3-4x+24+6x=x+27+3x\)
\(\Leftrightarrow2x+27=4x+27\)
\(\Leftrightarrow2x+27-4x-27=0\)
\(\Leftrightarrow-2x=0\)
\(\Leftrightarrow x=0\)
Vậy: S={0}
Tìm giá trị nhỏ nhất
a)\(\dfrac{\text{3x^2-2x+3}}{\text{x^2+1}}\)
b)\(\dfrac{\text{3x^2-4x+4}}{\text{x^2+2}}\)
\(a,\) Đặt \(A=\dfrac{3x^2-2x+3}{x^2+1}\Leftrightarrow Ax^2+A=3x^2-2x+3\)
\(\Leftrightarrow x^2\left(A-3\right)-2x+A-3=0\)
Coi đây là PT bậc 2 ẩn x, PT có nghiệm
\(\Leftrightarrow\Delta=4-4\left(A-3\right)^2\ge0\\ \Leftrightarrow\left(A-3\right)^2\le1\Leftrightarrow2\le A\le4\)
Vậy \(A_{min}=4\Leftrightarrow\dfrac{3x^2-2x+3}{x^2+1}=4\Leftrightarrow x=...\)
\(b,\) Đặt \(B=\dfrac{3x^2-4x+4}{x^2+2}\Leftrightarrow Bx^2+2B=3x^2-4x+4\)
\(\Leftrightarrow x^2\left(B-3\right)+4x+2B-4=0\)
Coi đây là PT bậc 2 ẩn x, PT có nghiệm
\(\Leftrightarrow\Delta=16-8\left(B-2\right)\left(B-3\right)\ge0\\ \Leftrightarrow\left(B-2\right)\left(B-3\right)\le2\\ \Leftrightarrow B^2-5B+4\le0\\ \Leftrightarrow\left(B-1\right)\left(B-4\right)\le0\\ \Leftrightarrow1\le B\le4\)
Vậy\(B_{min}=4\Leftrightarrow\dfrac{3x^2-4x+4}{x^2+2}=4\Leftrightarrow x=...\)
Thực hiện phép tính
a) \(\frac{\text{x + 9}}{x^2 - 9}-\frac{\text{3}}{\text{x^2 + 3x}}\)
b) \(\frac{\text{3x + 5 }}{\text{x^2 - 5x }}+\frac{\text{ 25 - x }}{\text{25 - 5x }}\)
c) \(\frac{\text{3 }}{\text{2x }}+\frac{\text{3x - 3 }}{\text{2x - 1 }}+\frac{ 2x^2 + 1 }{\text{4x^2 - 2x }}\)
d) \(\frac{\text{1}}{\text{3x - 2 }}-\frac{1}{\text{3x + 2 }}- \frac{\text{3x - 6}}{\text{4 - 9x^2}}\)
e) \(\frac{\text{18 }}{\text{(x - 3)(x^2 - 9) }}-\frac{\text{3 }}{\text{x^2 - 6x + 9 }}-\frac{\text{x}}{\text{x^2 - 9}}\)
g) \(\frac{\text{x + 2 }}{\text{x + 3 }}-\frac{\text{5 }}{\text{x^2 + x - 6 }}+\frac{\text{1}}{\text{2 - x}}\)
h) \(\frac{\text{4x }}{\text{x + 2 }}-\frac{\text{3x }}{\text{x - 2 }}+\frac{\text{12x}}{\text{x^2 - 4}}\)
i) \(\frac{\text{ x + 1 }}{\text{ x - 1 }}-\frac{\text{ x - 1 }}{\text{ x + 1 }}-\frac{\text{4}}{\text{1 - x^2}}\)
k) \(\frac{\text{
3x + 21
}}{\text{
x^2 - 9
}}+\frac{\text{2 }}{\text{x + 3 }}-\frac{\text{3}}{\text{x - 3}}\)
Cho \(\dfrac{\text{x}}{\text{2}}=\dfrac{\text{y}}{\text{3}}=\dfrac{\text{z}}{\text{5}}\). Tìm x,y,z biết
a) x + y + z = 40
b) x - 3y + 2z = 9
c) x -y + z = 28
d) 3x + 2y = 24
a. Theo t/c của dãy tỉ số bằng nhau ta có:
x+y+z/2+3+5=40/10=4
=>x=4.2=8
=>y=4.3=12
=>z=4.5=20
b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x-3y+2z}{2-3\cdot3+2\cdot5}=\dfrac{9}{-15}=\dfrac{-3}{5}\)
Do đó: \(\left\{{}\begin{matrix}x=-\dfrac{6}{5}\\y=\dfrac{-9}{5}\\z=-3\end{matrix}\right.\)
tìm x biết: \(\text{8x^3-12x^2+6x+1-(4x^2-1)=0}\)
Lời giải:
PT $\Leftrightarrow 8x^3-16x^2+6x+2=0$
$\Leftrightarrow (8x^3-8x^2)-(8x^2-8x)-(2x-2)=0$
$\Leftrightarrow 8x^2(x-1)-8x(x-1)-2(x-1)=0$
$\Leftrightarrow (x-1)(8x^2-8x-2)=0$
$\Leftrightarrow 2(x-1)(4x^2-4x-1)=0$
$\Leftrightarrow x-1=0$ hoặc $4x^2-4x-1=0$
Nếu $x-1=0\Leftrightarrow x=1$
Nếu $4x^2-4x-1=0$
$\Leftrightarrow (2x-1)^2-2=0$
$\Leftrightarrow (2x-1-\sqrt{2})(2x-1+\sqrt{2})=0$
$\Leftrightarrow x=\frac{1\pm \sqrt{2}}{2}$
Tìm A:
A = \(\frac{\text{24 . 34 - 42 . 27
}}{16.27-42.32}\)
Tìm x \(\in\)N để:
6x + 15 chia hết x + 2
Tìm X:
(X - 24). 15= 0
18.(x-16)=18
(20-x).5=0
Tim X, Y:
X.y - 2.x =0
(X-4)(x-3)=0
6x + 4x = 2020
Chứng tỏ rằng 111
ab101 = abab
Aaabbb = a00b.111