Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Diệu Ngọc
Xem chi tiết
Akai Haruma
6 tháng 8 2021 lúc 18:41

2.

$y=\sin ^4x+\cos ^4x=(\sin ^2x+\cos ^2x)^2-2\sin ^2x\cos ^2x$

$=1-\frac{1}{2}(2\sin x\cos x)^2=1-\frac{1}{2}\sin ^22x$

Vì: $0\leq \sin ^22x\leq 1$

$\Rightarrow 1\geq 1-\frac{1}{2}\sin ^22x\geq \frac{1}{2}$

Vậy $y_{\max}=1; y_{\min}=\frac{1}{2}$

 

Akai Haruma
6 tháng 8 2021 lúc 18:42

3.

$0\leq |\sin x|\leq 1$

$\Rightarrow 3\geq 3-2|\sin x|\geq 1$

Vậy $y_{\min}=1; y_{\max}=3$

Akai Haruma
6 tháng 8 2021 lúc 18:46

1.

\(y=\cos x+\cos (x-\frac{\pi}{3})=\cos x+\frac{1}{2}\cos x+\frac{\sqrt{3}}{2}\sin x\)

\(=\frac{3}{2}\cos x+\frac{\sqrt{3}}{2}\sin x\)

\(y^2=(\frac{3}{2}\cos x+\frac{\sqrt{3}}{2}\sin x)^2\leq (\cos ^2x+\sin ^2x)(\frac{9}{4}+\frac{3}{4})\)

\(\Leftrightarrow y^2\leq 3\Rightarrow -\sqrt{3}\leq y\leq \sqrt{3}\)

Vậy $y_{\min}=-\sqrt{3}; y_{max}=\sqrt{3}$

Võ Thị Minh Thư
Xem chi tiết
Mẫn Cảm
24 tháng 6 2017 lúc 15:00

b) Ta có:

\(y^2=\left(sinx\sqrt{cosx}+cosx\sqrt{sinx}\right)^2\le\left(sin^2x+cos^2x\right).\left(sinx+cosx\right)\)

(Áp dụng BĐT Bunhiacopxki)

\(\Leftrightarrow y^2\le sinx+cosx\Leftrightarrow y^2\le\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)\le\sqrt{2}\) (Do \(sin\alpha\le1\)

\(\Rightarrow y\le\sqrt[4]{2}\)

Vậy max y = \(\sqrt[4]{2}\) \(\Leftrightarrow\dfrac{\sqrt{cosx}}{sinx}=\dfrac{\sqrt{sinx}}{cosx}\Leftrightarrow x=\dfrac{\pi}{4}+k2\pi\) (k\(\in\)Z)

Hàm số không có giá trị nhỏ nhất.

Lan Gia Huy
Xem chi tiết
Nguyễn Thảo Hân
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 7 2020 lúc 22:35

a/

\(y=\frac{1}{sinx}+\frac{1}{cosx}\ge\frac{4}{sinx+cosx}=\frac{4}{\sqrt{2}sin\left(x+\frac{\pi}{4}\right)}\ge\frac{4}{\sqrt{2}}=2\sqrt{2}\)

\(y_{min}=2\sqrt{2}\) khi \(\left\{{}\begin{matrix}sinx=cosx\\sin\left(x+\frac{\pi}{4}\right)=1\end{matrix}\right.\) \(\Rightarrow x=\frac{\pi}{4}\)

\(y_{max}\) không tồn tại (y dần tới dương vô cùng khi x gần tới 0 hoặc \(\frac{\pi}{2}\))

b/

\(y=\frac{1}{1-cosx}+\frac{1}{1+cosx}=\frac{1+cosx+1-cosx}{1-cos^2x}=\frac{2}{sin^2x}\)

Hàm số ko tồn tại cả min lẫn max ( \(0< y< \infty\))

c/

Do \(tan^2x\) ko tồn tại max (tiến tới vô cực) trên khoảng đã cho nên hàm ko tồn tại max

\(y=2+\frac{sin^4x+cos^4x}{\left(sinx.cosx\right)^2}+\frac{1}{sin^4x+cos^4x}\ge2+2\sqrt{\frac{sin^4x+cos^4x}{\frac{1}{4}sin^22x.\left(sin^4x+cos^4x\right)}}\)

\(y\ge2+\frac{4}{sin2x}\ge2+\frac{4}{1}=6\)

\(y_{min}=6\) khi \(\left\{{}\begin{matrix}sin2x=1\\sin^4x+cos^4x=sinx.cosx\end{matrix}\right.\) \(\Rightarrow x=\frac{\pi}{4}\)

Nguyễn Đức Tài
Xem chi tiết
Huỳnh Tâm
25 tháng 8 2016 lúc 12:28

Xét tính chẵn lẻ:

a) TXĐ: D = R \ {π/2 + kπ| k nguyên}

Với mọi x thuộc D ta có (-x) thuộc D và

\(f\left(-x\right)=\frac{3\tan^3\left(-x\right)-5\sin\left(-x\right)}{2+\cos\left(-x\right)}=-\frac{3\tan^3x-5\sin x}{2+\cos x}=-f\left(x\right)\)

Vậy hàm đã cho là hàm lẻ

b) TXĐ: D = R \ \(\left\{\pm\sqrt{2};\pm1\right\}\)

Với mọi x thuộc D ta có (-x) thuộc D và

\(f\left(-x\right)=\frac{\sin\left(-x\right)}{\left(-x\right)^4-3\left(-x\right)^2+2}=-\frac{\sin x}{x^4-3x^2+2}=-f\left(x\right)\)

Vậy hàm đã cho là hàm lẻ

 

Huỳnh Tâm
25 tháng 8 2016 lúc 12:48

Tìm GTLN, GTNN:

TXĐ: D = R

a)  Ta có (\(\left(\sin x+\cos x\right)^2=1+\sin2x\)

Với mọi x thuộc D ta có\(-1\le\sin2x\le1\Leftrightarrow0\le1+\sin2x\le2\Leftrightarrow0\le\left(\sin x+\cos x\right)^2\le2\)

\(\Leftrightarrow0\le\left|\sin x+\cos x\right|\le\sqrt{2}\Leftrightarrow-\sqrt{2}\le\sin x+\cos x\le\sqrt{2}\)

Vậy  \(Min_{f\left(x\right)}=-\sqrt{2}\) khi \(\sin2x=-1\Leftrightarrow2x=-\frac{\pi}{2}+k2\pi\Leftrightarrow x=-\frac{\pi}{4}+k\pi\)

\(Max_{f\left(x\right)}=\sqrt{2}\) khi\(\sin2x=1\Leftrightarrow x=\frac{\pi}{4}+k\pi\)

b) Với mọi x thuộc D ta có: 

\(-1\le\cos x\le1\Leftrightarrow-2\le2\cos x\le2\Leftrightarrow1\le2\cos x+3\le5\)

\(\Leftrightarrow1\le\sqrt{2\cos x+3}\le\sqrt{5}\Leftrightarrow5\le\sqrt{2\cos x+3}+4\le\sqrt{5}+4\)

Vậy\(Min_{f\left(x\right)}=5\)  khi \(\cos x=-1\Leftrightarrow x=\pi+k2\pi\)

\(Max_{f\left(x\right)}=\sqrt{5}+4\)  khi \(\cos x=1\Leftrightarrow x=k2\pi\)

c) \(y=\sin^4x+\cos^4x=\left(\sin^2x+\cos^2x\right)^2-2\sin^2x\cos^2x\)\(=1-\frac{1}{2}\left(2\sin x\cos x\right)^2=1-\frac{1}{2}\sin^22x\)

Với mọi x thuộc D ta có: \(0\le\sin^22x\le1\Leftrightarrow-\frac{1}{2}\le-\frac{1}{2}\sin^22x\le0\Leftrightarrow\frac{1}{2}\le1-\frac{1}{2}\sin^22x\le1\)

Đến đây bạn tự xét dấu '=' xảy ra khi nào nha :p

Thiên Yết
Xem chi tiết
Mai Anh
Xem chi tiết
Hồng Phúc
29 tháng 8 2021 lúc 10:09

a, Đồ thị hàm số \(y=cosx\)\(\left(A=\left(-\dfrac{\pi}{2};0\right);B=\left(\dfrac{\pi}{2};0\right)\right)\)

Dựa vào đồ thị ta có \(\left\{{}\begin{matrix}y_{min}=0\\y_{max}=1\end{matrix}\right.\)

b, Đồ thị hàm số \(y=sinx\)\(\left(A=\left(-\dfrac{\pi}{2};-1\right);A=\left(\dfrac{\pi}{2};1\right)\right)\)

Trâm Phạm
Xem chi tiết
Nguyễn Việt Lâm
4 tháng 10 2020 lúc 16:33

a.

Do \(-1\le sin\left(x+\frac{\pi}{6}\right)\le1\Rightarrow1\le y\le5\)

\(y_{min}=1\) khi \(sin\left(x+\frac{\pi}{6}\right)=1\)

\(y_{max}=5\) khi \(sin\left(x+\frac{\pi}{6}\right)=-1\)

b.

\(y=2\left[\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x\right]+3\)

\(y=2-4sin^2x.cos^2x+3=5-sin^22x\)

Do \(0\le sin^22x\le1\Rightarrow4\le y\le5\)

\(y_{min}=4\) khi \(sin^22x=1\)

\(y_{max}=5\) khi \(sin^22x=0\)

Nguyễn Việt Lâm
4 tháng 10 2020 lúc 16:35

c.

\(y=2sin2x-1\)

Do \(-1\le sin2x\le1\Rightarrow-3\le y\le1\)

\(y_{min}=-3\) khi \(sin2x=-1\)

\(y_{max}=1\) khi \(sin2x=1\)

d.

\(-1\le sin3x\le1\Rightarrow-1\le y\le3\)

e.

\(0\le sin^22x\le1\Rightarrow1\le y\le4\)

Khách vãng lai đã xóa
Minh Anh
Xem chi tiết