Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
VUX NA
Xem chi tiết
Hồng Phúc
5 tháng 9 2021 lúc 0:46

Dấu BĐT bị ngược, sửa đề: \(\dfrac{1}{a^4+b^4+2ab^4}+\dfrac{1}{a^2+b^4+2a^2b^2}\le\dfrac{1}{2}\).

Đặt \(b^2=x\left(x>0\right)\Rightarrow a+x=2ax\).

Khi đó ta cần chứng minh:

\(\dfrac{1}{a^4+x^2+2ax^2}+\dfrac{1}{a^2+x^4+2a^2x}\le\dfrac{1}{2}\)

Áp dụng BĐT AM-GM:

\(\dfrac{1}{a^4+x^2+2ax^2}+\dfrac{1}{a^2+x^4+2a^2x}\)

\(\le\dfrac{1}{2a^2x+2ax^2}+\dfrac{1}{2ax^2+2a^2x}\)

\(=\dfrac{2}{2ax\left(a+x\right)}\)

\(=\dfrac{1}{ax\left(a+x\right)}\)

\(=\dfrac{1}{2a^2x^2}\)

Ta thấy: \(a+x\ge2\sqrt{ax}\)

\(\Leftrightarrow2ax\ge2\sqrt{ax}\)

\(\Leftrightarrow ax-\sqrt{ax}\ge0\)

\(\Leftrightarrow\sqrt{ax}\left(\sqrt{ax}-1\right)\ge0\)

\(\Leftrightarrow\sqrt{ax}\ge1\)

\(\Rightarrow ax\ge1\)

Khi đó: \(\dfrac{1}{2a^2x^2}\le\dfrac{1}{2}\)

\(\Rightarrow\dfrac{1}{a^4+x^2+2ax^2}+\dfrac{1}{a^2+x^4+2a^2x}\le\dfrac{1}{2}\)

Hay \(\dfrac{1}{a^4+b^4+2ab^4}+\dfrac{1}{a^2+b^4+2a^2b^2}\le\dfrac{1}{2}\).

Anh Thu
Xem chi tiết
HT.Phong (9A5)
27 tháng 7 2023 lúc 8:35

1) \(\left(a+b\right)^2\)

\(=\left(a+b\right)\left(a+b\right)\)

\(=a^2+ab+ab+b^2\)

\(=a^2+2ab+b^2\left(dpcm\right)\)

2) \(\left(a-b\right)^3\)

\(=\left(a-b\right)\left(a-b\right)\left(a-b\right)\)

\(=\left(a^2-ab-ab+b^2\right)\left(a-b\right)\)

\(=\left(a^2-2ab+b^2\right)\left(a-b\right)\)

\(=a^3-a^2b-2a^2+2ab^2+ab^2-b^3\)

\(=a^3-3a^2b+3ab^2-b^3\left(dpcm\right)\)

Pons
27 tháng 7 2023 lúc 9:05

`a)` 

`(a+b)^2`

`=(a+b)(a+b)`

`=a^2+ab+ab+b^2`

`=a^2+2ab+b^2`

`->` ĐPCM

`b)` `(a-b)^3`

`=(a-b)(a-b)(a-b)`

`=(a^2-2ab+b^2)(a-b)`

`=a^3-3a^2b+3ab^2-b^3`

`->` ĐPCM

Học Ngu
Xem chi tiết
Vũ Lang
Xem chi tiết
Nguyen Minh Anh
Xem chi tiết
Lấp La Lấp Lánh
15 tháng 10 2021 lúc 8:18

Chọn B

OH-YEAH^^
15 tháng 10 2021 lúc 8:19

B

Thị Thư Nguyễn
15 tháng 10 2021 lúc 8:19

B

Trần Nguyễn Khánh Linh
Xem chi tiết
Lê Thị Thục Hiền
3 tháng 7 2021 lúc 9:55

a, \(\left(a+b+c\right)^2=\left[\left(a+b\right)+c\right]^2=\left(a+b\right)^2+2c\left(a+b\right)+c^2=a^2+b^2+c^2+2ab+2ac+2bc\)

b, \(\left(a+b\right)^2+\left(a-b\right)^2=a^2+2ab+b^2+a^2-2ab+b^2=2a^2+2b^2\)

c, \(\left(a+b\right)^2-\left(a-b\right)^2=\left(a+b-a+b\right)\left(a+b+a-b\right)=2b.2a=4ab\)

Minh Nhân
3 tháng 7 2021 lúc 9:56

\(\left(a+b+c\right)^2=\left[\left(a+b\right)+c\right]^2=\left(a+b\right)^2+2\cdot\left(a+b\right)\cdot c+c^2\\ =a^2+2ab+b^2+2ac+2bc+c^2\\ =a^2+b^2+c^2+2ab+2ac+2bc\)

\(\left(a+b\right)^2+\left(a-b\right)^2=a^2+2ab+b^2+a^2-2ab+b^2\\ 2a^2+2b^2\)

\(\left(a+b\right)^2-\left(a-b\right)^2=\left(a+b+a-b\right)\left(a+b-a+b\right)\\ =2a\cdot2b=4ab\)

Minh Nguyệt
3 tháng 7 2021 lúc 9:58

a) (a+b+c)2 = (a+b)2 + 2(a+b)c + c2 = a2 + 2ab +b2 + 2ac+ 2bc+ c2

b) (a+b)2 + (a-b)2 = a2+ 2ab+ b2+ a2- 2ab +b2= 2a2 + 2b2

c) (a+b)2- (a-b)2 = a2+ 2ab+ b2- a2+ 2ab- b2 = 4ab

Lê Tùng Lâm
Xem chi tiết
QNC T
Xem chi tiết
King Good
5 tháng 10 2021 lúc 20:00

Nguyễn Lê Phước Thịnh
5 tháng 10 2021 lúc 21:39

Bài 2: 

b: Ta có: \(x\left(x+4\right)\left(x-4\right)-\left(x^2+1\right)\left(x^2-1\right)\)

\(=x^3-4x-x^4+1\)

\(=-x^4+x^3-4x+1\)

c: Ta có: \(\left(a+b-c\right)^2-\left(a-c\right)^2-2ab+2ab\)

\(=\left(a+b-c-a+c\right)\left(a+b-c+a-c\right)\)

\(=b\left(2a+b-2c\right)\)

\(=2ab+b^2-2bc\)

Phuong Linh
21 tháng 5 2024 lúc 22:49

 

\(a + b = -3\)   

\(ab = 2\)

Từ \(ab = 2\), ta có thể giải ra được \(a = \frac{2}{b}\) hoặc \(b = \frac{2}{a}\).

Đặt \(a = \frac{2}{b}\) vào \(a + b = -3\) ta được:   

\(\frac{2}{b} + b = -3\)  

\(2 + b^2 = -3b\)  

\(b^2 + 3b + 2 = 0\)  

\((b + 1)(b + 2) = 0\)  

\(b = -1\) hoặc \(b = -2\).

Khi \(b = -1\), ta có \(a = -2\). Khi \(b = -2\), ta có \(a = -1\).

Vậy giá trị của biểu thức \(A = a^3 + b^3\) khi \(a = -2, b = -1\) hoặc khi \(a = -1, b = -2\). 

Hoàn Minh
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 3 2022 lúc 14:09

\(2a^2+5b^2+2ab=1\Leftrightarrow\left(a-b\right)^2+\left(a+2b\right)^2=1\)

Đặt \(P=\dfrac{a-b}{a+2b+2}\Rightarrow P\left(a+2b\right)+2P=a-b\)

\(\Rightarrow2P=\left(a-b\right)-P\left(a+2b\right)\)

\(\Rightarrow4P^2=\left[\left(a-b\right)-P\left(a+2b\right)\right]^2\le\left(P^2+1\right)\left[\left(a-b\right)^2+\left(a+2b\right)^2\right]=P^2+1\)

\(\Rightarrow3P^2\le1\Rightarrow-\dfrac{1}{\sqrt{3}}\le P\le\dfrac{1}{\sqrt{3}}\)