Giải pt nghiệm nguyên
4(x-3)y2+2(x2-4x+3)y+x2-5x=6
Giải pt nghiệm nguyên:
1) 3(x2-xy+y2)=7(x+y)
2) 5(x2+xy+y2)=7(x+2y)
1/ vẽ ĐTHS y=1/4x^2
2/ vẽ ĐTHS y=-4x^2
3/ giải pt
X^2 +15x - 16= 0
X^2 +17x + 16= 0
X^2 - 5x + 1= 0
4x^2 + 4x + 1 = 0
4/ ko giải pt hãy tính x1 + x2 ; x1 nhân x2 ; x1^2 + x2^2 với x1,x2 là 2 nghiệm của pt ( nếu có) của các pt sau
X2 - 5x + 1= 0
2x^2 - 3x - 1= 0
5/ cho pt x^2 + 4x + m= 0 ,m là tham số
Tìm để để pt trên có 2 nghiệm cùng dấu
Tìm m để pt trên có 2 nghiệm trái dấu
Bài 1: Cho pt x2 + 13x -1 = 0 (1). Không giải pt, hãy lập một pt bậc hai có các nghiệm y1, y2 lớn hơn nghiệm của pt (1) là 2.
Bài 2: Cho pt x2 - 5x + 6 = 0 (1). Không giải pt, hãy lập pt bậc hai có các nghiệm y1 và y2 là:
a/ Số đối các nghiệm của pt (1).
b/ Nghịch đảo các nghiệm của pt (1).
2:
a: y1+y2=-(x1+x2)=-5
y1*y2=(-x1)(-x2)=x1x2=6
Phương trình cần tìm có dạng là;
x^2+5x+6=0
b: y1+y2=1/x1+1/x2=(x1+x2)/x1x2=5/6
y1*y2=1/x1*1/x2=1/x1x2=1/6
Phương trình cần tìm là:
a^2-5/6a+1/6=0
Phân tích đa thức thành nhân tử:
a) x 2 -3x + 2; b) 4 x 2 - 36x + 56;
c) 2 x 2 + 5x + 2; d)2 x 2 -9x + 7;
e) 4 x 2 - 4x - 9 y 2 + 12y - 3; g) x 4 - 2 x 3 -4 x 2 + 4x-3;
h) x 3 -x +3 x 2 y + 3x y 2 + y 3 -y.
a) (x - 1)(x - 2). b) 4(x - 2)(x - 7).
c) (x + 2)(2x +1). d) (x - l)(2x - 7).
e) (2x + 3y - 3)(2x - 3y +1). g) (x - 3)( x 3 + x 2 - x +1).
h) (x + y)(x + y-l)(x + y + l).
Phân tích các đa thức sau thành nhân tử:
a) x2 - 9 - x2 (x2 - 9) d) x2 + 5x + 6 h) a2 + b2 + 2a – 2b – 2ab
b) x2(x-y) + y2(y-x) e) 3x2 – 4x – 4 i) (x + 1)2 – 2(x + 1)(y – 3) + (y – 3)2
c) x3+27+(x+3)(x-9) g) x4 + 64y4 k) x2(x + 1) – 2x(x + 1) + x + 1
Mình đang cần gấp ạ
a: \(x^2-9-x^2\left(x^2-9\right)\)
\(=\left(x^2-9\right)-x^2\left(x^2-9\right)\)
\(=\left(x^2-9\right)\left(1-x^2\right)\)
\(=\left(1-x\right)\left(1+x\right)\left(x-3\right)\left(x+3\right)\)
b: \(x^2\left(x-y\right)+y^2\left(y-x\right)\)
\(=x^2\left(x-y\right)-y^2\left(x-y\right)\)
\(=\left(x-y\right)\left(x^2-y^2\right)\)
\(=\left(x-y\right)\left(x-y\right)\left(x+y\right)=\left(x-y\right)^2\cdot\left(x+y\right)\)
c: \(x^3+27+\left(x+3\right)\left(x-9\right)\)
\(=\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)\)
\(=\left(x+3\right)\left(x^2-3x+9+x-9\right)\)
\(=\left(x+3\right)\left(x^2-2x\right)=x\left(x-2\right)\left(x+3\right)\)
d: \(x^2+5x+6\)
\(=x^2+2x+3x+6\)
\(=x\left(x+2\right)+3\left(x+2\right)=\left(x+2\right)\left(x+3\right)\)
e: \(3x^2-4x-4\)
\(=3x^2-6x+2x-4\)
\(=3x\left(x-2\right)+2\left(x-2\right)\)
\(=\left(x-2\right)\left(3x+2\right)\)
g: \(x^4+64y^4\)
\(=x^4+16x^2y^2+64y^4-16x^2y^2\)
\(=\left(x^2+8y^2\right)^2-\left(4xy\right)^2\)
\(=\left(x^2+8y^2-4xy\right)\left(x^2+8y^2+4xy\right)\)
h: \(a^2+b^2+2a-2b-2ab\)
\(=a^2-2ab+b^2+2a-2b\)
\(=\left(a-b\right)^2+2\left(a-b\right)=\left(a-b\right)\left(a-b+2\right)\)
i: \(\left(x+1\right)^2-2\left(x+1\right)\left(y-3\right)+\left(y-3\right)^2\)
\(=\left(x+1-y+3\right)^2\)
\(=\left(x-y+4\right)^2\)
k: \(x^2\left(x+1\right)-2x\left(x+1\right)+\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-2x+1\right)\)
\(=\left(x+1\right)\left(x-1\right)^2\)
giải pt nghiệm nguyên sau: 1, x2+y2-8x+3y=-18
2, x+y+xy =x^2+y^2
3, x2+(x+y)^2= (x+9)^2
4, \(x^4y-x^4+2x^3-2x^2+2x-y=1\)
giải pt nghiệm nguyên dương
x2+x+1 =y2
Chị @Akai Haruma chị giúp e bài này đc k ạ
Bài 4:
\(x^4y-x^4+2x^3-2x^2+2x-y=1\)
\(\Leftrightarrow y(x^4-1)-(x^4-2x^3+2x^2-2x+1)=0\)
\(\Leftrightarrow y(x^2+1)(x^2-1)-[x^2(x^2-2x+1)+(x^2-2x+1)]=0\)
\(\Leftrightarrow y(x^2+1)(x-1)(x+1)-(x-1)^2(x^2+1)=0\)
\(\Leftrightarrow (x^2+1)(x-1)[y(x+1)-(x-1)]=0\)
\(\Rightarrow \left[\begin{matrix} x-1=0(1)\\ y(x+1)-(x-1)=0(2)\end{matrix}\right.\)
Với $(1)$ ta thu được $x=1$, và mọi $ý$ nguyên.
Với $(2)$
\(y(x+1)=x-1\Rightarrow y=\frac{x-1}{x+1}\in\mathbb{Z}\)
\(\Rightarrow x-1\vdots x+1\)
\(\Rightarrow x+1-2\vdots x+1\Rightarrow 2\vdots x+1\)
\(\Rightarrow x+1\in\left\{\pm 1; \pm 2\right\}\Rightarrow x\in\left\{-2; 0; -3; 1\right\}\)
\(\Rightarrow y\left\{3;-1; 2; 0\right\}\)
Vậy \((x,y)=(-2,3); (0; -1); (-3; 2); (1; t)\) với $t$ nào đó nguyên.
Bài 1:
\(x^2+y^2-8x+3y=-18\)
\(\Leftrightarrow x^2+y^2-8x+3y+18=0\)
\(\Leftrightarrow (x^2-8x+16)+(y^2+3y+\frac{9}{4})=\frac{1}{4}\)
\(\Leftrightarrow (x-4)^2+(y+\frac{3}{2})^2=\frac{1}{4}\)
\(\Rightarrow (x-4)^2=\frac{1}{4}-(y+\frac{3}{2})^2\leq \frac{1}{4}<1\)
\(\Rightarrow -1< x-4< 1\Rightarrow 3< x< 5\)
Vì \(x\in\mathbb{Z}\Rightarrow x=4\)
Thay vào pt ban đầu ta thu được \(y=-1\) or \(y=-2\)
Vậy.......
Bài 2:
Ta có: \(x+y+xy=x^2+y^2\)
\(\Leftrightarrow 2x^2+2y^2=2x+2y+2xy\)
\(\Leftrightarrow 2x^2+2y^2-2x-2y-2xy=0\)
\(\Leftrightarrow (x^2-2xy+y^2)+(x^2-2x+1)+(y^2-2y+1)=2\)
\(\Leftrightarrow (x-y)^2+(x-1)^2+(y-1)^2=2(*)\)
\(\Rightarrow (y-1)^2\leq 2<4\Rightarrow -2< y-1< 2\)
\(\Rightarrow -1< y< 3\Rightarrow y\in\left\{0;1;2\right\}\)
Thay $y$ với các giá trị trên vào pt ban đầu ta thu được:
\(y=0\Rightarrow x=0, x=1\)
\(y=1\Rightarrow x=0; x=2\)
\(y=2\Rightarrow x=1;x=2\)
Tìm nghiệm của đa thức
1) 4x + 9 2) -5x + 6 3) x2 - 1 4) x2 - 9
5) x2 - x 6) x2 - 2x 7) x2 - 3x 8) 3x2 - 4x
Lời giải:
1.
$4x+9=0$
$4x=-9$
$x=\frac{-9}{4}$
2.
$-5x+6=0$
$-5x=-6$
$x=\frac{6}{5}$
3.
$x^2-1=0$
$x^2=1=1^2=(-1)^2$
$x=\pm 1$
4.
$x^2-9=0$
$x^2=9=3^2=(-3)^2$
$x=\pm 3$
5.
$x^2-x=0$
$x(x-1)=0$
$x=0$ hoặc $x-1=0$
$x=0$ hoặc $x=1$
6.
$x^2-2x=0$
$x(x-2)=0$
$x=0$ hoặc $x-2=0$
$x=0$ hoặc $x=2$
7.
$x^2-3x=0$
$x(x-3)=0$
$x=0$ hoặc $x-3=0$
$x=0$ hoặc $x=3$
8.
$3x^2-4x=0$
$x(3x-4)=0$
$x=0$ hoặc $3x-4=0$
$x=0$ hoặc $x=\frac{4}{3}$
Bài 1: Không giải Pt xét xem mỗi PT sau có bao nhiêu nghiệm a) x2 – 2x – 5= 0 ( Có 2 nghiệm phân biệt ) b) x2 + 4x + 4= 0 ( PT có nghiệm kép ) c) x2 – x + 4 = 0 (PT vô nghiệm ) d) x2 – 5x + 2=0 ( PT có 2 nghiệm phân biệt )
1. Giải hpt\(\left\{{}\begin{matrix}\dfrac{3y}{x-1}+\dfrac{2x}{y+1}=3\\\dfrac{2y}{x-1}-\dfrac{5x}{y+1}=2\end{matrix}\right.\)
2.Cho PT : x2-6x+2m-3=0
-Tìm m để PT có nghiệm x1,x2 thỏa : (x12-5x1+2m-4)(x22-5x2+2m-4)=2
Giải phương trình:
a)x2-4x+4=0
b)2x2-x=0
c)x2-5x+6=0
d)x2+y2=0
e)x2+6x+10=0
\(a.x^2-4x+4=0\)
\(\left(x-2\right)^2=0\)
=>x=2
b) \(2x^2-x=0\)
\(x\left(2x-1\right)=0\)
=> \(\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\end{matrix}\right.\)
c) \(x^2-5x+6=0\)
\(x^2-2x-3x+6=0\)
\(\left(x-2\right)\left(x-3\right)=0\)
=> \(\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
d) \(x^2+y^2=0\)
Vì \(x^2,y^2\ge0\forall x,y\)
=>x=y=0
e) \(x^2+6x+10=0\)
\(\left(x+3\right)^2+1=0\)
Vì \(\left(x+3\right)^2\ge0\forall x\)
=> VT>0 \(\forall x\)
=> phương trình vô nghiệm
a) \(x^2-4x+4=0\)
\(\Leftrightarrow\left(x-2\right)^2=0\)
\(\Leftrightarrow x-2=0\)
\(\Leftrightarrow x=2\)
b) \(2x^2-x=0\)
\(\Leftrightarrow x\left(2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x-1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\end{matrix}\right.\)
c) \(x^2-5x+6=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\) \(\left(a+b+c=0\right)\)
d) \(x^2+y^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2=0\\y^2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
e) \(x^2+6x+10=0\)
\(\Leftrightarrow x^2+6x+9+1=0\)
\(\Leftrightarrow\left(x+3\right)^2+1=0\left(1\right)\)
mà \(\left(x+3\right)^2+1\ge1>0,\forall x\in R\)
Nên phương trình (1) vô nghiệm