Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hà Phạm Nhật Hà
Xem chi tiết
Akai Haruma
23 tháng 7 2018 lúc 23:39

Lời giải:

Ta có:

\(\frac{1+\sin x}{1-\sin x}+\frac{1-\sin x}{1+\sin x}=\frac{(1+\sin x)^2+(1-\sin x)^2}{(1-\sin x)(1+\sin x)}\)

\(=\frac{1+\sin ^2x+2\sin x+1-2\sin x+\sin ^2x}{1-\sin ^2x}\)

\(=\frac{2(1+\sin ^2x)}{\cos ^2x}=\frac{2(\sin ^2x+\cos ^2x+\sin ^2x)}{\cos ^2x}\)

\(=\frac{4\sin ^2x+2\cos ^2x}{\cos ^2x}=4(\frac{\sin x}{\cos x})^2+2=4\tan ^2x+2=2(1+2\tan ^2x)\)

Ta có đpcm.

Vinh Duong Van
Xem chi tiết
Trần Minh Hoàng
20 tháng 9 2020 lúc 12:15

ĐK: ...

\(VT=\left[\frac{\left(1+sinx\right)-\left(1-sinx\right)}{\sqrt{1-sin^2x}}\right]^2=\left(\frac{2sinx}{cosx}\right)^2=4tan^2x=VP\left(đpcm\right)\)

Khách vãng lai đã xóa
Đàm Nữ Quỳnh Anh
Xem chi tiết
Vũ Bùi Nhật Linh
28 tháng 7 2018 lúc 9:54

xem câu đầu ở đây nè https://olm.vn/hoi-dap/question/1248282.html

Brake Hữu
Xem chi tiết
Nguyễn Đắc Định
8 tháng 4 2018 lúc 10:54

\(VT=\dfrac{\sin x}{\sin x-cosx}-\dfrac{cosx}{sinx+cosx}\\ =\dfrac{sin^2x+\sin x\cos x-\sin x\cos x+\cos^2x}{\left(\sin x-\cos x\right)\left(\sin x+\cos x\right)}\\ =\dfrac{1}{\sin^2x-\cos^2x}\)

\(VP=\dfrac{1+\cot^2x}{1-\cot^2}\\ =\left(1+\cot^2x\right)\cdot\dfrac{1}{1-\cot^2x} \\=\dfrac{1}{\sin^2x}\cdot\dfrac{1}{1-\cot^2x}\\ =\dfrac{1}{\sin^2x-\sin^2x\cdot\cot^2x}\\ =\dfrac{1}{\sin^2x-\cos^2x}=VT\)

Ngô Thành Chung
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 4 2021 lúc 21:54

\(=\dfrac{1+sinx+1-sinx}{\sqrt{\left(1-sinx\right)\left(1+sinx\right)}}=\dfrac{2}{\sqrt{1-sin^2x}}=\dfrac{2}{\sqrt{cos^2x}}=\dfrac{2}{\left|cosx\right|}\)

Mai Anh
Xem chi tiết
Lê Thị Thục Hiền
30 tháng 6 2021 lúc 8:10

a)Đk:\(sinx\ne1\)

Pt\(\Leftrightarrow sin^2x+sinx=-2\left(sinx-1\right)\)

\(\Leftrightarrow sin^2x+3sinx-2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=\dfrac{-3+\sqrt{17}}{2}\left(tm\right)\\sinx=\dfrac{-3-\sqrt{17}}{2}\left(ktm\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=arcc.sin\left(\dfrac{-3+\sqrt{17}}{2}\right)+k2\pi\\x=\pi-arc.sin\left(\dfrac{-3+\sqrt{17}}{2}\right)+k2\pi\end{matrix}\right.\)(\(k\in Z\))

b)Đk:\(sinx\ne1\)

Pt \(\Leftrightarrow\dfrac{1-2sin^2x+sinx}{sinx-1}+1=0\)

\(\Leftrightarrow\dfrac{-\left(sinx-1\right)\left(2sinx+1\right)}{sinx-1}+1=0\)

\(\Leftrightarrow-\left(2sinx+1\right)+1=0\)

\(\Leftrightarrow sinx=0\) (tm)

\(\Leftrightarrow x=k\pi,k\in Z\)

Vậy...

Lâm Tố Như
Xem chi tiết
Nguyễn Việt Lâm
25 tháng 4 2019 lúc 16:40

\(\sqrt{\frac{1+sinx}{1-sinx}}+\sqrt{\frac{1-sinx}{1+sinx}}=\sqrt{\frac{sin^2\frac{x}{2}+cos^2\frac{x}{2}+2sin\frac{x}{2}.cos\frac{x}{2}}{sin^2\frac{x}{2}+cos^2\frac{x}{2}-2sin\frac{x}{2}.cos\frac{x}{2}}}+\sqrt{\frac{sin^2\frac{x}{2}+cos^2\frac{x}{2}-2sin\frac{x}{2}.cos\frac{x}{2}}{sin^2\frac{x}{2}+cos^2\frac{x}{2}+2sin\frac{x}{2}.cos\frac{x}{2}}}\)

\(=\sqrt{\frac{\left(sin\frac{x}{2}+cos\frac{x}{2}\right)^2}{\left(sin\frac{x}{2}-cos\frac{x}{2}\right)^2}}+\sqrt{\frac{\left(sin\frac{x}{2}-cos\frac{x}{2}\right)^2}{\left(sin\frac{x}{2}+cos\frac{x}{2}\right)^2}}=\frac{\left|sin\frac{x}{2}+cos\frac{x}{2}\right|}{\left|sin\frac{x}{2}-cos\frac{x}{2}\right|}+\frac{\left|sin\frac{x}{2}-cos\frac{x}{2}\right|}{\left|sin\frac{x}{2}+cos\frac{x}{2}\right|}\)

\(=\frac{\left(sin\frac{x}{2}+cos\frac{x}{2}\right)^2+\left(sin\frac{x}{2}-cos\frac{x}{2}\right)^2}{\left|sin^2\frac{x}{2}-cos^2\frac{x}{2}\right|}=\frac{2}{\left|cosx\right|}\)

Nguyễn Sinh Hùng
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 8 2021 lúc 14:58

ĐKXĐ: (tất cả \(k\in Z\))

a. \(sinx-1\ge0\Leftrightarrow sinx\ge1\)

\(\Leftrightarrow sinx=1\Rightarrow x=\dfrac{\pi}{2}+k2\pi\)

b. \(\left\{{}\begin{matrix}\dfrac{1-sinx}{1+sinx}\ge0\left(luôn-đúng\right)\\1+sinx\ne0\end{matrix}\right.\) \(\Leftrightarrow sinx\ne-1\)

\(\Leftrightarrow x\ne-\dfrac{\pi}{2}+k2\pi\)

c. \(sinx\ne0\Leftrightarrow x\ne k\pi\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 12 2018 lúc 14:57

Đáp án: B.

Hướng dẫn: Đặt u = (x + 1), v' = sinx.