Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Minh Chiến
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 7 2023 lúc 23:50

x-y-z=0

=>x=y+z và y=x-z và z=x-y

B=(1-z/x)(1-x/y)(1+y/z)+2023

\(=\dfrac{x-z}{x}\cdot\dfrac{y-x}{y}\cdot\dfrac{y+z}{z}+2023\)

\(=\dfrac{y}{x}\cdot\dfrac{-z}{y}\cdot\dfrac{x}{z}+2023=2023-1=2022\)

Lê Khả Duy
Xem chi tiết
Nguyen My Van
12 tháng 5 2022 lúc 18:15

Ta có: \(x-y-z=0\)

\(\Rightarrow x-y=z\)

\(x-z=y\)

\(y+z=x\)

\(\Rightarrow B=\left(1-\dfrac{z}{x}\right)\left(1-\dfrac{x}{y}\right)\left(1+\dfrac{y}{z}\right)\)

\(=\dfrac{x-z}{x}.\dfrac{-\left(y-x\right)}{y}.\dfrac{z+y}{z}\)

\(=\dfrac{y}{x}.-\dfrac{z}{y}.\dfrac{z}{x}=-1\)

\(\Rightarrow B=-1\)

Mai Phương Nguyễn
Xem chi tiết
qlamm
30 tháng 12 2021 lúc 1:50

Tham khảo

undefined

Vũ Minh Nhật
Xem chi tiết
Lê Hữu Thái Vũ
26 tháng 6 2021 lúc 20:20

tao đẹp trai thì có gì sai

Khách vãng lai đã xóa
Hoàng Khôi Phong  ( ɻɛɑm...
29 tháng 6 2021 lúc 14:38

bài này mà là âm nhạc???

Khách vãng lai đã xóa
Nguyễn Đức Lâm
Xem chi tiết
Lấp La Lấp Lánh
27 tháng 9 2021 lúc 12:54

Ta có: \(\left\{{}\begin{matrix}x^2+2y+1=0\\y^2+2z+1=0\\z^2+2x+1=0\end{matrix}\right.\)

\(\Rightarrow x^2+2y+1+y^2+2z+1+z^2+2x+1=0\)

\(\Rightarrow\left(x+1\right)^2+\left(y+1\right)^2+\left(z+1\right)^2=0\)

\(\Rightarrow x=y=z=-1\)(do \(\left(x+1\right)^2,\left(y+1\right)^2,\left(z+1\right)^2\ge0\forall x,y,z\))

a) \(A=x^{2020}+y^{2020}+z^{2020}=\left(-1\right)^{2020}+\left(-1\right)^{2020}+\left(-1\right)^{2020}=1+1+1=3\)

b) \(B=\dfrac{1}{x^{2020}}+\dfrac{1}{y^{2020}}+\dfrac{1}{z^{2020}}=\dfrac{1}{\left(-1\right)^{2020}}+\dfrac{1}{\left(-1\right)^{2020}}+\dfrac{1}{\left(-1\right)^{2020}}=\dfrac{1}{1}+\dfrac{1}{1}+\dfrac{1}{1}=3\)

Lê Hồng Thái Dương
Xem chi tiết
ILoveMath
10 tháng 2 2022 lúc 15:07

\(x+y+z=0\\ \Rightarrow\left\{{}\begin{matrix}x=-y-z\\y=-z-x\\z=-x-y\end{matrix}\right.\)

\(\dfrac{xy}{x^2+y^2-z^2}+\dfrac{yz}{y^2+z^2-x^2}+\dfrac{zx}{z^2+x^2-y^2}\)

\(=\dfrac{xy}{x^2+y^2-\left(-x-y\right)^2}+\dfrac{yz}{y^2+z^2-\left(-y-z\right)^2}+\dfrac{zx}{z^2+x^2-\left(-z-x\right)^2}\)

\(=\dfrac{xy}{x^2+y^2-\left(x+y\right)^2}+\dfrac{yz}{y^2+z^2-\left(y+z\right)^2}+\dfrac{zx}{z^2+x^2-\left(z+x\right)^2}\)

\(=\dfrac{xy}{x^2+y^2-x^2-2xy-y^2}+\dfrac{yz}{y^2+z^2-y^2-2yz-z^2}+\dfrac{zx}{z^2+x^2-z^2-2zx-x^2}\)

\(=\dfrac{xy}{-2xy}+\dfrac{yz}{-2yz}+\dfrac{zx}{-2zx}\)

\(=-\dfrac{1}{2}-\dfrac{1}{2}-\dfrac{1}{2}\)

\(=-\dfrac{3}{2}\)

 

ILoveMath
Xem chi tiết
Nguyễn Thùy Chi
Xem chi tiết
thieu muoi =)))
Xem chi tiết
lyzimi
Xem chi tiết
phan tuấn anh
1 tháng 3 2016 lúc 20:49

vì \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1=>\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{xz}{cz}\right)=1\)

 ==>A=\(1-2\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{xz}{cz}\right)=1-\frac{2\left(cxy+ayz+bzx\right)}{xyz}\)(1)

mặt khác từ \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\) ==> \(\frac{ayz+bzx+cxy}{xyz}=0=>ayz+cxy+bzx=0\) ( thay vào (1) ta có 

A=1-0=1