Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
18 tháng 9 2019 lúc 14:28

Đáp án: A

Theo hệ thức Vi-ét ta có:

Ta xét các phương án:

 

Đỗ Quang Phi
Xem chi tiết
Nguyễn Hoàng Minh
1 tháng 12 2021 lúc 13:53

Hàm số bậc nhất \(\Leftrightarrow\left\{{}\begin{matrix}m^2-3m=0\\2m^2+m\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\left(m-3\right)=0\\m\left(2m+1\right)\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m=0\\m=3\end{matrix}\right.\\\left\{{}\begin{matrix}m\ne0\\m\ne-\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow m=3\)

Baoo Trann Trann Thii
Xem chi tiết
Duy Khang
Xem chi tiết
Duy Khang
12 tháng 5 2021 lúc 9:17

Ai giúp mik vs ạ

 

Ngoc Anh Thai
12 tháng 5 2021 lúc 12:24

Đặt \(t=x^2\left(t\ge0\right)\)

Khi đó phương trình ban đầu tương đương với pt\(t^2-2\left(m+2\right)t+m^2-2m+3=0\) (*) 

Để pt ban đầu có 4 nghiệm phân biệt thì pt (*) có hai nghiệm dương phân biệt ⇔ 

\(\left\{{}\begin{matrix}\Delta>0\\S>0\\P>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(m+2\right)^2-m^2+2m-3>0\\2\left(m+2\right)>0\\m^2-2m+3>0\end{matrix}\right.\)

⇔ \(\left\{{}\begin{matrix}6m+1>0\\m+2>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>-\dfrac{1}{6}\\m>-2\end{matrix}\right.\)

⇔ \(m>-\dfrac{1}{6}.\)

Giả sử (*) có hai nghiệm là t1, t2. Khi đó theo Viet ta có t1.t2 = m2 - 2m + 3.

Ta có: x1.x2.x3.x4 = t1.t2 = m2 - 2m +3.

Ta có E = m2 - 2m + 3 = (m - 1)2 + 2 ≥ 2.

Min E = 2. Dấu bằng xảy ra khi m = 1.

 

bé con baby
Xem chi tiết
Hoaa
3 tháng 11 2019 lúc 20:23

câu a bạn áp dụng hệ thức Viet rồi rút m và thay vào cái kia r tìm ra thôi

haha

Khách vãng lai đã xóa
Nguyễn Việt Lâm
3 tháng 11 2019 lúc 21:14

\(\Delta'=\left(m-1\right)^2-4\left(-2m+5\right)=m^2+6m-19\ge0\)

Theo định lý Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m-2\\x_1x_2=-2m+5\end{matrix}\right.\)

Cộng vế với vế: \(x_1+x_2+x_1x_2=3\)

Đây là biểu thức liên hệ 2 nghiệm ko phụ thuộc m

b/ \(A=\frac{1}{x_1+1}+\frac{1}{x_2+1}=\frac{x_1+x_2+2}{\left(x_1+1\right)\left(x_2+1\right)}=\frac{x_1+x_2+2}{x_1x_2+x_1+x_2+1}\)

\(=\frac{2m-2+2}{3+1}=\frac{2m}{4}=\frac{m}{2}\) (mẫu số sử dụng kết quả câu a để rút gọn cho lẹ)

c/ \(A=2\Rightarrow\frac{m}{2}=2\Rightarrow m=4\)

Thay vào biểu thức \(\Delta\) thấy thỏa mãn.

Vậy \(m=4\)

Khách vãng lai đã xóa
Phạm Phương Linh
Xem chi tiết
Akai Haruma
24 tháng 7 2021 lúc 0:01

Lời giải:

$D=(x+1)(x^2-4)(x+5)+2014$

$=(x+1)(x+2)(x-2)(x+5)+2014$
$=(x^2+3x+2)(x^2+3x-10)+2014$

$=t(t-12)+2014$ (đặt $x^2+3x+2=t$)

$=t^2-12t+2014=(t-6)^2+1978$

$=(x^2+3x-4)^2+1978\geq 1978$

Vậy gtnn của biểu thức là $1978$. Giá trị này đạt tại $x^2+3x-4=0$

$\Leftrightarrow x=1$ hoặc $x=-4$

Liên Phạm
Xem chi tiết
Nguyễn Việt Lâm
19 tháng 1 2021 lúc 12:54

\(\Delta'=\left(m-1\right)^2-\left(m^2+m\right)=-3m+1>0\Rightarrow m< \dfrac{1}{3}\)

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=m^2+m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{x_1+x_2+2}{2}\\x_1x_2=m^2+m\end{matrix}\right.\)

\(\Rightarrow x_1x_2=\left(\dfrac{x_1+x_2+2}{2}\right)^2+\dfrac{x_1+x_2+2}{2}\)

Đây là hệ thức liên hệ 2 nghiệm ko phụ thuộc m (bạn có thể rút gọn thêm nếu cần)

Đỗ Tuệ Lâm
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 4 2023 lúc 14:39

Coi như pt đã cho có nghiệm, theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m-1\right)}{m-2}\\x_1x_2=\dfrac{m-3}{m-2}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m-2+1\right)}{m-2}=2+\dfrac{2}{m-2}\\x_1x_2=\dfrac{m-2-1}{m-2}=1-\dfrac{1}{m-2}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=2+\dfrac{2}{m-2}\\2x_1x_2=2-\dfrac{2}{m-2}\end{matrix}\right.\)

Cộng vế: 

\(\Rightarrow x_1+x_2+2x_1x_2=4\)

Đây là hệ thức liên hệ ko phụ thuộc m

pe_mèo
21 tháng 4 2023 lúc 14:57

Coi như pt đã cho có nghiệm, theo hệ thức Viet: ⇒⎧⎪ ⎪ ⎪⎨⎪ ⎪ ⎪⎩x1+x2=2(m−2+1)m−2=2+2m−2x1x2=m−2−1m−2=1−1m−2⇒{�1+�2=2(�−2+1)�−2=2+2�−2�1�2=�−2−1�−2=1−1�−2

Hường
Xem chi tiết
T . Anhh
19 tháng 3 2023 lúc 11:37

Theo viet: \(x_1+x_2=m+2\)

                 \(x_1x_2=2m-1\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x_1+2x_2=2m+4\\x_1x_2=2m-1\end{matrix}\right.\)

Trừ vế cho vế: \(2x_1+2x_2-x_1x_2=5\)

Vậy hệ thức trên độc lập với m.