Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Shinichi Kudo
Xem chi tiết
Dương Linh
Xem chi tiết
Tạ Uyên
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 8 2021 lúc 0:26

Ta có: \(x^4-8x^3+21x^2-24x+9=0\)

\(\Leftrightarrow x^4-5x^3+3x^2-3x^3+15x^2-9x+3x^2-5x+9=0\)

\(\Leftrightarrow\left(x^2-5x+3\right)\left(x^2-3x+3\right)=0\)

\(\Leftrightarrow x^2-5x+3=0\)

\(\text{Δ}=\left(-5\right)^2-4\cdot1\cdot3=25-12=13\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{5-\sqrt{13}}{2}\\x_2=\dfrac{5+\sqrt{13}}{2}\end{matrix}\right.\)

Nguyễn Quốc Việt
Xem chi tiết
Hồng Phúc
27 tháng 9 2021 lúc 12:57

\(sin^23x-cos^24x=sin^25x-cos^26x\)

\(\Leftrightarrow2sin^23x-2cos^24x=2sin^25x-2cos^26x\)

\(\Leftrightarrow2sin^23x-1+1-2cos^24x=2sin^25x-1+1-2cos^26x\)

\(\Leftrightarrow-cos6x-cos8x=-cos10x-cos12x\)

\(\Leftrightarrow cos6x-cos12x+cos8x-cos10x=0\)

\(\Leftrightarrow sin9x.sin6x+sin9x.sin4x=0\)

\(\Leftrightarrow sin9x.\left(sin6x+sin4x\right)=0\)

\(\Leftrightarrow2sin9x.sin5x.cosx=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin9x=0\\sin5x=0\\cosx=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{k\pi}{9}\\x=\dfrac{k\pi}{5}\\x=\dfrac{\pi}{2}+k\pi\end{matrix}\right.\)

Vũ Ngọc Duy Anh
Xem chi tiết
Nguyễn Linh Chi
30 tháng 5 2020 lúc 19:55

ĐK: \(\hept{\begin{cases}x\ge2\\y\ge-\frac{1}{3}\end{cases}}\)

\(\sqrt{x-2}+x^3-6x^2+12x=\sqrt{3y+1}+27y^3+27y^2+9y+9\)

<=> \(\sqrt{x-2}+x^3-6x^2+12x-8=\sqrt{3y+1}+27y^3+27y^2+9y+1\)

<=> \(\sqrt{x-2}+\left(x-2\right)^3=\sqrt{3y+1}+\left(3y+1\right)^3\)

<=> \(\left(\sqrt{x-2}-\sqrt{3y+1}\right)+\left[\left(x-2\right)^3-\left(3y+1\right)^3\right]=0\)

<=> \(\frac{x-3y-3}{\sqrt{x-2}+\sqrt{3y+1}}+\left(x-3y-3\right)\left[\left(x-2\right)^2+\left(x-2\right)\left(3y+1\right)+\left(3y+1\right)^2\right]=0\)

<=> \(\left(x-3y-3\right)\left(\frac{1}{\sqrt{x-2}+\sqrt{3y+1}}+\left(x-2\right)^2+\left(x-2\right)\left(3y+1\right)+\left(3y+1\right)^2\right)=0\)

<=> \(x-3y-3=0\)

vì \(\frac{1}{\sqrt{x-2}+\sqrt{3y+1}}+\left(x-2\right)^2+\left(x-2\right)\left(3y+1\right)+\left(3y+1\right)^2>0\)

<=> x = 3y + 3

Thế vào phương trình trên ta có: 

\(2+2\left(3y+3\right)^2-2y^2+3\left(3y+3\right)y-4\left(3y+3\right)-3y=0\)

<=> \(25y^2+30y+8=0\Leftrightarrow\orbr{\begin{cases}y=-\frac{2}{5}\\y=-\frac{4}{5}\end{cases}}\)không thỏa mãn đk 

Vậy hệ vô nghiệm.

Khách vãng lai đã xóa
Rimuru Tempest
Xem chi tiết
Nguyễn Hoàng Minh
22 tháng 11 2021 lúc 22:50

\(PT\Leftrightarrow-5x^2-24x+60=\left(x^2+5x-10\right)^2\\ \Leftrightarrow-5x^2-24x+60=x^4+10x^3+5x^2-100x+100\\ \Leftrightarrow x^4+10x^3+10x^2-76x+40=0\\ \Leftrightarrow x^4+4x^3-10x^2+6x^3+24x^2-60x-4x^2-16x+40=0\\ \Leftrightarrow\left(x^2+4x-10\right)\left(x^2+6x-4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2+4x-10=0\\x^2+6x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2+\sqrt{14}\\x=-2-\sqrt{14}\\x=-3+\sqrt{13}\\x=-3-\sqrt{13}\end{matrix}\right.\)

Thanh Ngân
Xem chi tiết
Wall HaiAnh
7 tháng 3 2018 lúc 20:05

Bài giải

 Cộng cả 2 vế với 4x^2+4 
>>x^4+4x^2+4=4x^2+24x+36 
>>(x^2+2)^2=4(x+3)^2 
>>x^2+2=2(x+3)(1) hoặc x^2+2=-2(x+3)(2) 
(1)>>x^2-2x-4=0>>x=1(+-)căn 5 
(2)>>x^2+2x+8=0(vô nghiệm)

~Hok tốt~

Huỳnh Quang Sang
7 tháng 3 2018 lúc 20:05

Cộng cả 2 vế với 4x^2+4 
>>x^4+4x^2+4=4x^2+24x+36 
>>(x^2+2)^2=4(x+3)^2 
>>x^2+2=2(x+3)(1) hoặc x^2+2=-2(x+3)(2) 
(1)>>x^2-2x-4=0>>x=1(+-)căn 5 
(2)>>x^2+2x+8=0(vô nghiệm

Phanh lạc trôi
7 tháng 3 2018 lúc 20:07

ctfy,uggvvvvvvujhmtfgg

haiz aneu
Xem chi tiết
Trần Minh Hoàng
11 tháng 3 2021 lúc 19:28

ĐKXĐ: \(x\geq -2\).

Nhận thấy x = -2 không là nghiệm của pt.

Xét x khác -2.

\(PT\Leftrightarrow\sqrt[3]{x^3+8}-\left(2x+4\right)=\dfrac{24x-18}{x^2-2x-7}-6\)

\(\Leftrightarrow\dfrac{\left(x+2\right)\left(x^2-6x-4\right)}{\sqrt[3]{x^3+8}+x+2}=\dfrac{-6\left(x^2-6x-4\right)}{x^2-2x-7}\)

\(\Leftrightarrow\dfrac{x+2}{\sqrt[3]{x^3+8}+x+2}=\dfrac{-6}{x^2-2x-7}\left(1\right)\) hoặc x2 - 6x - 4 = 0.

\(\left(1\right)\Rightarrow\left(x+2\right)\left(x^2-2x-1\right)=-6\sqrt[3]{x^3+8}\)

+) Nếu x \(\geq 7\) thì \(\left(x+2\right)\left(x^2-2x-1\right)>0\ge-6\sqrt{x^3+8}\) (loại)

+) Nếu \(x\le7\) thì \(\left(x+2\right)\left(x^2-2x-1\right)\ge-2\left(x+2\right)>-6\sqrt[3]{3\left(x+2\right)}\ge-6\sqrt[3]{x^3+8}\) (loại)

Do đó (1) vô nghiệm.

Do đó \(x^2-6x-4=0\Leftrightarrow\left[{}\begin{matrix}x=3+\sqrt{13}\left(TMĐK\right)\\x=3-\sqrt{13}\left(loại\right)\end{matrix}\right.\)

Vậy...

Nguyễn Vân Hương
Xem chi tiết