chứng minh rằng / a / + / b / \(\ge\) / a+b/
Cho a+b+c=6. Chứng minh rằng nếu c≥a; c≥b thì c≥a+b
Đề này sai đó bạn.
Giả sử c = 2,5; a = 2 và c = 1,5
Ta có: \(c\ge a;c\ge b\) nhưng \(c< a+b\) (mâu thuẫn với đề bài).
Cho a ≥ 1, b ≥ 1. Chứng minh rằng : a√b - 1 + b√a - 1 ≤ ab
\(a\sqrt{b-1}+b\sqrt{a-1}-1\)
\(=a\sqrt{1.\left(b-1\right)}+b\sqrt{1.\left(a-1\right)}\le a\dfrac{1+b-1}{2}+b\dfrac{1+a-1}{2}=\dfrac{ab}{2}+\dfrac{ab}{2}=ab\)dấu "=" xảy ra khi a=b=2
1. Chứng minh rằng:
a. \(\dfrac{a^2+b^2}{2}\)≥(\(\dfrac{a+b}{2}\))2
b. \(\dfrac{a^2+b^2+c^2}{3}\)≥(\(\dfrac{a+b+c}{3}\))2
2. Chứng minh rằng:
a. a2+\(\dfrac{b^2}{4}\)≥ab
b. (a+b)2≤ 2(a2+b2)
c. a2+b2+1 ≥ ab+a+b
3. Chứng minh rằng: a2+ 5b2-(3a+b) ≥ 3ab-5
1a)\(\dfrac{a^2+b^2}{2}\ge\dfrac{\left(a+b\right)^2}{4}\)
\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)(luôn đúng)
b)\(\dfrac{a^2+b^2+c^2}{3}\ge\dfrac{\left(a+b+c\right)^2}{9}\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(luôn đúng)
2a)\(a^2+\dfrac{b^2}{4}\ge ab\)
\(\Leftrightarrow a^2-ab+\dfrac{b^2}{4}\ge0\)
\(\Leftrightarrow a^2-2\cdot\dfrac{1}{2}b\cdot a+\left(\dfrac{1}{2}b\right)^2\ge0\)
\(\Leftrightarrow\left(a-\dfrac{1}{2}b\right)^2\ge0\)(luôn đúng)
b)Đã cm
c)\(a^2+b^2+1\ge ab+a+b\)
\(\Leftrightarrow2a^2+2b^2+2\ge2ab+2a+2b\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2\ge0\)(luôn đúng)
Dấu bằng xảy ra khi a=b=1
2. a) a2 + \(\dfrac{b^2}{4}\)≥ab
<=> a2 - ab + \(\dfrac{b^2}{4}\)≥ 0
<=> a2 -2.\(\dfrac{b}{2}a+\left(\dfrac{b}{2}\right)^2\) ≥ 0
<=> \(\left(a-\dfrac{b}{2}\right)^2\)≥ 0 ( luôn đúng )
=> đpcm
b) ( a + b)2 ≤ 2( a2 + b2)
<=> a2 + 2ab + b2 - 2a2 - 2b2 ≤ 0
<=> - ( a2 - 2ab + b2 ) ≤ 0
<=> - ( a - b)2 ≤ 0 ( luôn đúng )
=> đpcm
c) a2 + b2 + 1 ≥ ab + a + b
<=> 2( a2 + b2 + 1 ) ≥ 2( ab + a + b)
<=> a2 - 2ab + b2 + a2 - 2a + 1 + b2 - 2b + 1 ≥ 0
<=> ( a - b)2 + ( a - 1)2 + ( b - 1)2 ≥ 0 ( luôn đúng )
=> đpcm
cho a,b,b ≥0. Chứng minh rằng:
\(\dfrac{a+b}{2}\ge\sqrt{ab}\)
\(\dfrac{a+b}{2}\ge\sqrt{ab}\)
\(\Rightarrow a+b\ge2\sqrt{ab}\)
\(\Rightarrow a+b-2\sqrt{ab}\ge0\)
\(\Rightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) (đúng)
Dấu "=" xảy ra khi: \(a=b\)
Chứng minh rằng nếu $a \ge b$, $x \ge y$ thì $\dfrac{ax + by}2 \ge \dfrac{a + b}2 . \dfrac{x + y}2$.
ta có :
\(\frac{ax+by}{2}\ge\frac{a+b}{2}.\frac{x+y}{2}\Leftrightarrow2\left(ax+by\right)\ge\left(a+b\right)\left(x+y\right)\)
\(\Leftrightarrow2\left(ax+by\right)\ge ax+ay+bx+by\)
\(\Leftrightarrow ax-ay+by-bx\ge0\Leftrightarrow\left(a-b\right)\left(x-y\right)\ge0\)
Điều này đúng do giả thuyết \(a\ge b,x\ge y\)
ta có \(\dfrac{ax+by}{2}\) ≥ \(\dfrac{a+b}{2}\). \(\dfrac{x+y}{2}\)
<=> 2(ax + by) ≥ (a + b)(x + y)
<=> 2(ax + by) ≥ ax + ay + bx + by
<=> ax + by - ay - bx ≥ 0
<=> (a - b)(x - y) ≥ 0 (luôn đúng vì giả thiết a ≥ b và x ≥ y)
vậy nếu a ≥ b, x ≥ y thì \(\dfrac{ax+by}{2}\) ≥ \(\dfrac{a+b}{2}\). \(\dfrac{x+y}{2}\)
Ta có
(luôn đúng vì giả thiết và ).
Vậy nếu , thì .
Chứng minh rằng:
\(a^4\)+\(b^4\)+\(c^4\)+\(d^4\)\(\ge\)2(\(a^2b^2\)+\(c^2d^2\))\(\ge\)4abcd
1.Cho các số dương a,b. Chứng minh rằng \(\dfrac{1}{a}\)+\(\dfrac{1}{b}\)≥\(\dfrac{4}{a+b}\)
2. Cho a,b,c là các số thực không âm. Chứng minh rằng (a+b)(b+c)(c+a)≥8abc
1) xét hiệu
\(\dfrac{1}{a}+\dfrac{1}{b}-\dfrac{4}{a+b}\ge0\)
<=> \(\dfrac{b\left(a+b\right)}{ab\left(a+b\right)}+\dfrac{a\left(a+b\right)}{ab\left(a+b\right)}-\dfrac{4ab}{ab\left(a+b\right)}\ge0\)
=> b(a+b)+a(a+b)-4ab ≥ 0
<=> ab+b2+a2+ab-4ab ≥ 0
<=> a2 -2ab+b2 ≥ 0
<=> (a-b)2 ≥ 0 (luôn đúng )
=> đpcm
2)Ta có:\(\left(a-b\right)^2\ge0\)
\(\Rightarrow a^2-2ab+b^2\ge0\)
\(\Rightarrow a^2+2ab+b^2-4ab\ge0\)
\(\Rightarrow\left(a+b\right)^2\ge4ab\)
TT\(\Rightarrow\left(b+c\right)^2\ge4bc;\left(c+a\right)^2\ge4ca\)
\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\ge64a^2b^2c^2\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)
Cho a+b+c=1. Chứng minh rằng: b+c\(\ge\)16abc ( a,b,c\(\ge\)0)
Áp dụng BĐT cô si cho 2 số không âm
\(b+c\ge2\sqrt{bc}\)
<=>\(\left(b+c\right)^2\ge4bc\) (1)
Áp dụng BĐT cô si cho 2 số không âm
\(a+\left(b+c\right)\ge2\sqrt{a\left(b+c\right)}\)
<=>\(\left[a+\left(b+c\right)\right]^2\ge4a\left(b+c\right)\)
<=>\(1\ge4a\left(b+c\right)\) (2)
nhân (1) với (2) ta đc
\(\left(b+c\right)^2\ge16abc.\left(b+c\right)\)
<=>\(b+c\ge16abc\) (đpcm)
\(1=\left(a+b+c\right)^2\ge4a\left(b+c\right)\)
\(\Rightarrow b+c\ge4a\left(b+c\right)^2\ge4a\cdot4bc=16abc\)
Dấu "=" \(\Leftrightarrow\left\{{}\begin{matrix}a=b+c\\b=c\\a+b+c=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\frac{1}{2}\\b=c=\frac{1}{4}\end{matrix}\right.\)
Cho a + b > 0, chứng minh rằng:
\(\dfrac{a+b}{2}\ge\sqrt[3]{\dfrac{a^3+b^3}{2}}\)
Sửa: Cho a+b<0
\(BĐT\Leftrightarrow\dfrac{\left(a+b\right)^3}{8}\ge\dfrac{a^3+b^3}{2}\\ \Leftrightarrow2\left(a+b\right)^3\ge8\left(a^3+b^3\right)\\ \Leftrightarrow2\left(a^3+b^3\right)+6ab\left(a+b\right)\ge8\left(a^3+b^3\right)\\ \Leftrightarrow6ab\left(a+b\right)-6\left(a^3+b^3\right)\ge0\\ \Leftrightarrow6\left[ab\left(a+b\right)-\left(a+b\right)\left(a^2-ab+b^2\right)\right]\ge0\\ \Leftrightarrow6\left(a+b\right)\left(-a^2+2ab-b^2\right)\ge0\\ \Leftrightarrow-6\left(a+b\right)\left(a-b\right)^2\ge0\left(\text{luôn đúng do }-6< 0;a+b< 0\right)\)
Dấu \("="\Leftrightarrow a=b< 0\)