Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
dream XD
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 3 2021 lúc 20:17

d) Ta có: \(n^2+5n+9⋮n+3\)

\(\Leftrightarrow n^2+3n+2n+6+3⋮n+3\)

\(\Leftrightarrow n\left(n+3\right)+2\left(n+3\right)+3⋮n+3\)

mà \(n\left(n+3\right)+2\left(n+3\right)⋮n+3\)

nên \(3⋮n+3\)

\(\Leftrightarrow n+3\inƯ\left(3\right)\)

\(\Leftrightarrow n+3\in\left\{1;-1;3;-3\right\}\)

hay \(n\in\left\{-2;-4;0;-6\right\}\)

Vậy: \(n\in\left\{-2;-4;0;-6\right\}\)

Thinh phạm
8 tháng 3 2021 lúc 20:18

d) Ta có: n2+5n+9⋮n+3n2+5n+9⋮n+3

⇔n2+3n+2n+6+3⋮n+3⇔n2+3n+2n+6+3⋮n+3

⇔n(n+3)+2(n+3)+3⋮n+3⇔n(n+3)+2(n+3)+3⋮n+3

mà n(n+3)+2(n+3)⋮n+3n(n+3)+2(n+3)⋮n+3

nên 3⋮n+33⋮n+3

⇔n+3∈Ư(3)⇔n+3∈Ư(3)

⇔n+3∈{1;−1;3;−3}

Trần Nguyên Đức
8 tháng 3 2021 lúc 20:20

`b)` - Ta thấy : `|x+1|+|x-2|+|x+7|>=0`

`-> 5x-10>=0`

`-> 5x>=10`

`-> x>=2`

`-> |x+1|=x+1;|x-2|=x-2;|x+7|=x+7`

- Vậy ta có :

`(x+1)+(x-2)+(x+7)=5x-10`

`<=> x+1+x-2+x+7=5x-10`

`<=> 3x+6=5x-10`

`<=> 3x-5x=-10-6`

`<=> -2x=-16`

`<=> x=8`

Lê Thành Đạt
Xem chi tiết
Nguyen Ngoc Hoa
Xem chi tiết
Lê Thị Bích Thảo
Xem chi tiết
Nguyễn Xuân Đình Lực
Xem chi tiết
ngân
4 tháng 7 2020 lúc 21:19

mk chưa học đến lớp 9 

xin lỗi bn nha

Khách vãng lai đã xóa
phạm hương trà
Xem chi tiết
Thiên An
Xem chi tiết
alibaba nguyễn
9 tháng 5 2017 lúc 14:27

Câu 2/

\(\frac{a^2+bc}{a^2\left(b+c\right)}+\frac{b^2+ca}{b^2\left(c+a\right)}+\frac{c^2+ab}{c^2\left(a+b\right)}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

\(\Leftrightarrow\frac{a^2+bc}{a^2\left(b+c\right)}-\frac{1}{a}+\frac{b^2+ca}{b^2\left(c+a\right)}-\frac{1}{b}+\frac{c^2+ab}{c^2\left(a+b\right)}-\frac{1}{c}\ge0\)

\(\Leftrightarrow\frac{\left(b-a\right)\left(c-a\right)}{a^2\left(b+c\right)}+\frac{\left(a-b\right)\left(c-b\right)}{b^2\left(c+a\right)}+\frac{\left(a-c\right)\left(b-c\right)}{c^2\left(a+b\right)}\ge0\)

\(\Leftrightarrow a^4b^4+b^4c^4+c^4a^4-a^4b^2c^2-a^2b^4c^2-a^2b^2c^4\ge0\)

\(\Leftrightarrow a^4b^4+b^4c^4+c^4a^4\ge a^4b^2c^2+a^2b^4c^2+a^2b^2c^4\left(1\right)\)

Ma ta có: \(\hept{\begin{cases}a^4b^4+b^4c^4\ge2a^2b^4c^2\left(2\right)\\b^4c^4+c^4a^4\ge2a^2b^2c^4\left(3\right)\\c^4a^4+a^4b^4\ge2a^4b^2c^2\left(4\right)\end{cases}}\)

Cộng (2), (3), (4) vế theo vế rồi rút gọn cho 2 ta được điều phải chứng minh là đúng.

PS: Nếu nghĩ được cách khác đơn giản hơn sẽ chép lên cho b sau. Tạm cách này đã.

Thiên An
9 tháng 5 2017 lúc 19:09

tks bn nhé, bn giúp mk câu 1 được ko

alibaba nguyễn
10 tháng 5 2017 lúc 8:24

Thỏa theo nguyện vọng mình làm luôn câu 1 cho b luôn :)

Câu 1/

\(A=\frac{\left(x+1\right)\left(x-y\right)}{y^2-xy+1}\)

Điều kiện: \(y^2-xy+1\ne0\)

Với x, y cùng chẵn, lẻ và x lẻ y chẵn thì tử là số chẵn, mẫu là số lẻ nên A sẽ là số chẵn.

Với x chẵn y lẻ thì tử là số lẻ mẫu là số chẵn nên A không phải là số nguyên.

Từ đây ta có được nếu A là số nguyên tố thì A chỉ có thể là 2.

\(A=\frac{\left(x+1\right)\left(x-y\right)}{y^2-xy+1}=2\)

\(\Leftrightarrow2y^2-xy+y-x^2-x+2=0\)

\(\Leftrightarrow\left(x-y\right)\left(2y+x+1\right)=2\)

\(\Rightarrow\left(x-y,2y+x+1\right)=\left(1,2;2,1\right)\)

\(\Rightarrow\hept{\begin{cases}x=1\\y=0\end{cases}}\)

phan trung tín
Xem chi tiết
Big City Boy
Xem chi tiết
Akai Haruma
30 tháng 11 2023 lúc 23:03

Lời giải:

$A=\frac{2}{3}+\frac{4}{3^2}+\frac{6}{3^3}+...+\frac{2n}{3^n}$

$3A=2+\frac{4}{3}+\frac{6}{3^2}+....+\frac{2n}{3^{n-1}}$

$3A-A=2+\frac{2}{3}+\frac{2}{3^2}+....+\frac{2}{3^{n-1}}-\frac{2n}{3^n}$

$2A=2+\frac{2}{3}+\frac{2}{3^2}+....+\frac{2}{3^{n-1}}-\frac{2n}{3^n}$

$A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{n-1}}-\frac{n}{3^n}$

$3A=3+1+\frac{1}{3}+....+\frac{1}{3^{n-2}}-\frac{n}{3^{n-1}}$

$3A-A=3-\frac{1}{3^{n-1}}-\frac{n}{3^{n-1}}+\frac{n}{3^n}$

$2A=3-\frac{n+1}{3^{n-1}}+\frac{n}{3^n}$

$2A=\frac{3^{n+1}-2n-3}{3^n}$

$A=\frac{3.3^n-2n-3}{2.3^n}$

$\Rightarrow a=3; b=1; c=2\Rightarrow abc=6$