xác định các số hữu tỉ a,b,c sao cho :
\(\frac{2x^2-x+1}{\left(x+1\right)\left(x-2\right)^2}=\frac{a}{x+1}+\frac{b}{x-2}+\frac{c}{\left(x-2\right)^2}\)
Cho a,b,c là 3 số đôi một khác nhau. Tính giá trị của biểu thức. CMR số \(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\) là bình phương 1 số hữu tỉ
\(\text{Cho A}=\left(\frac{1}{1-x}-1\right):\left(x+1-\frac{1-2x}{1-x}\right)\)
a,Rút gọn A
b,Tìm x để A=1/2
c,Tìm x để A>1
d,Tìm giá trị nguyên của x để A có giá trị nguyên
Bài 1: cho \(a,b,c\ge0\) và a+b+c=1. Chứng minh rằng :
a,\(\left(1-a\right)\cdot\left(1-b\right)\cdot\left(1-c\right)\ge8\cdot a\cdot b\cdot c\)
b,\(16\cdot a\cdot b\cdot c\ge a+b\)
c,\(\frac{a}{1+a}+\frac{2\cdot b}{2+b}+\frac{3\cdot c}{3+c}\le\frac{6}{7}\)
Bài 2: cho a,b,c>0 và a.b.c=0 chứng minh rằng:
\(\frac{b\cdot c}{a^2\cdot b+a^2\cdot c}+\frac{a\cdot c}{b^2\cdot c+b^2\cdot a}+\frac{a\cdot b}{c^2\cdot a+c^2\cdot b}\ge\frac{3}{2}\)
cho 3 số a,b,c thỏa mãn điều kiện \(\frac{1}{bc-a^2}+\frac{1}{ca-b^2}+\frac{1}{ab-c^2}=0\)
CMR: \(\frac{a}{\left(bc-a^2\right)^2}+\frac{b}{\left(ca-b^2\right)^2}+\frac{c}{\left(ab-c^2\right)^2}=0\)
cho biểu thức : \(P=\frac{\left(\frac{a}{b}+\frac{b}{a}+1\right)\left(\frac{1}{a}-\frac{1}{b}\right)^2}{\frac{a^2}{b^2}+\frac{b^2}{a^2}-\left(\frac{a}{b}+\frac{b}{a}\right)}\) với a>0 ; b>0 ; a khác b
a. CM : P=1/ab
b. giả sử a,b thay đổi sao cho \(4a+b+\sqrt{ab}=1\) . Tìm min P
Cho 3 số thực khác nhau và khác 0 là a,b,c thỏa mãn \(a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\) . Chứng ming :
\(\frac{bc-a^2}{a\left(bc-1\right)}=\frac{b^2-ac}{b\left(1-ac\right)}\)
@Lê Trịnh Việt Tiến GIẢI ĐI
Cho biểu thức A= $\left(\frac{1}{x-1}-\frac{1}{x+1}\right)$ : $\left(1+\frac{x}{1-x}\right)$
a) rút gọn A
b) tìm giá trị nguyên của x để A có giá trị nguyên
Câu 1: (4 điểm)
1. Cho phân thức:\(\left(\frac{3x^2+3}{x^3-1}-\frac{x-1}{x^2+x+1}-\frac{1}{x-1}\right)\times\frac{x-1}{2x^2-5x+5}\)
a) Rút gọn B. b) Tìm giá trị lớn nhất của B.
2. Cho a, c, b là 3 số hữu tỷ khác 0 thỏa mãn a + b + c = 0. Chứng minh \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\) Từ đó suy ra \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\) là bình phương của một số hữu tỷ.