Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Đức Việt Anh
Xem chi tiết
Minh Hiếu
9 tháng 12 2021 lúc 21:01

ab=1

⇒ \(a=\dfrac{1}{b}\)

⇒ \(a^2=\dfrac{1}{b^2}\)

Thay vào P:

\(P=\dfrac{1}{\dfrac{1}{b^2}}+\dfrac{1}{b^2}+\dfrac{2}{\dfrac{1}{b^2}+b^2}\)

   \(=\left(b^2+\dfrac{1}{b^2}\right)+\dfrac{2}{b^2+\dfrac{1}{b^2}}\)

Áp dụng BĐT Cô Si cho 2 số dương

⇒ \(P\) ≥ \(2\sqrt{\left(b^2+\dfrac{1}{b^2}\right).\dfrac{2}{b^2+\dfrac{1}{b^2}}}\)

       \(=2\sqrt{2}\)

Min P= \(2\sqrt{2}\) ⇔ \(b^2=\dfrac{1}{b^2}\) ⇔b=1

 

Big City Boy
Xem chi tiết
Akai Haruma
17 tháng 3 2021 lúc 21:58

Lời giải:

Áp dụng BĐT AM-GM:

$P=(a+1)+\frac{2}{a+1}+2\geq 2\sqrt{(a+1).\frac{2}{a+1}}+2=2\sqrt{2}+2$

Vậy $P_{\min}=2\sqrt{2}+2$

Giá trị này đạt tại $(a+1)^2=2; a>0\Leftrightarrow a=\sqrt{2}-1$

------------------------

Bổ sung ĐK: $a>1$

$X=\frac{a^2-1+2}{a-1}=a+1+\frac{2}{a-1}$

$=(a-1)+\frac{2}{a-1}+2$

$\geq 2\sqrt{2}+2$ (AM-GM)

Vậy $X_{\min}=2\sqrt{2}+2$
Giá trị đạt tại $(a-1)^2=\sqrt{2}; a>1\Leftrightarrow a=\sqrt{2}+1$

Phương Pham
Xem chi tiết
Phương Pham
13 tháng 4 2022 lúc 20:27

giúp mình với 

Nguyễn Việt Lâm
14 tháng 4 2022 lúc 15:05

\(P=\dfrac{1}{6-4a}+\dfrac{4}{4a}\ge\dfrac{\left(1+2\right)^2}{6-4a+4a}=\dfrac{9}{6}=\dfrac{3}{2}\)

\(P_{min}=\dfrac{3}{2}\) khi \(\dfrac{6-4a}{1}=\dfrac{4a}{2}\Rightarrow a=1\)

hiền nguyễn
Xem chi tiết
Akai Haruma
30 tháng 4 2023 lúc 11:36

Lời giải:

Áp dụng BĐT Cauchy-Schwarz:
$P=\frac{18}{a^2+b^2}+\frac{10}{2ab}\geq \frac{(\sqrt{18}+\sqrt{10})^2}{a^2+b^2+2ab}$

$=\frac{(\sqrt{18}+\sqrt{10})^2}{(a+b)^2}=(\sqrt{18}+\sqrt{10})^2=28+12\sqrt{5}$

Vậy $P_{\min}=28+12\sqrt{5}$

Kimian Hajan Ruventaren
Xem chi tiết
Nguyễn Việt Lâm
16 tháng 1 2021 lúc 20:04

Chắc chắn đây không phải là 1 đề bài chính xác

Lê Trần Nam Khánh
Xem chi tiết
Nguyễn Đức Trí
6 tháng 10 2023 lúc 19:12

Áp dụng BĐT :

\(\dfrac{a^{^2}}{x}+\dfrac{b^{^2}}{y}\ge\dfrac{\left(a+b\right)^2}{\left(x+y\right)}\) (Bạn tự chứng minh nhé)

\(F=\dfrac{a^2}{a+1}+\dfrac{b^2}{b+1}\ge\dfrac{\left(a+b\right)^2}{a+1+b+1}=\dfrac{\left(a+b\right)^2}{a+b+2}\)

\(\Rightarrow F=\dfrac{a^2}{a+1}+\dfrac{b^2}{b+1}\ge\dfrac{2^2}{2+2}=1\)

Vậy \(Min\left(F\right)=1\)

Mai Thị Thanh
Xem chi tiết
Mai Thị Thanh
21 tháng 8 2021 lúc 20:51

mong mn giúp mk vs 

Hiếu Minh
Xem chi tiết
Nguyễn Hoàng Minh
24 tháng 11 2021 lúc 22:12

\(1,\text{Áp dụng Mincopxki: }\\ Q\ge\sqrt{\left(a+\dfrac{1}{a}\right)^2+\left(b+\dfrac{1}{b}\right)^2}\ge\sqrt{2^2+2^2}=\sqrt{8}=2\sqrt{2}\\ \text{Dấu }"="\Leftrightarrow a=b\)

Nguyễn Hoàng Minh
24 tháng 11 2021 lúc 22:14

\(2,\text{Áp dụng BĐT Cauchy-Schwarz: }\\ P\ge\dfrac{9}{a^2+b^2+c^2+2ab+2bc+2ca}=\dfrac{9}{\left(a+b+c\right)^2}\ge\dfrac{9}{1}=9\\ \text{Dấu }"="\Leftrightarrow a=b=c=\dfrac{1}{3}\)

Phan PT
Xem chi tiết
Phan PT
6 tháng 2 2021 lúc 23:40

cái kia là \(3\sqrt{\dfrac{1}{a}+\dfrac{9}{b}+\dfrac{25}{c}}\)

Nguyễn Việt Lâm
7 tháng 2 2021 lúc 0:34

\(\left(a^2+\dfrac{b^2}{3}+\dfrac{c^2}{5}\right)\left(1+3+5\right)\ge\left(a+b+c\right)^2\)

\(\Rightarrow3\sqrt{a^2+\dfrac{b^2}{3}+\dfrac{c^2}{5}}\ge a+b+c\)

\(\Rightarrow P\ge\dfrac{2}{3}\left(a+b+c\right)+3\sqrt{\dfrac{1}{a}+\dfrac{3^2}{b}+\dfrac{5^2}{c}}\)

\(\Rightarrow P\ge\dfrac{2}{3}\left(a+b+c\right)+3\sqrt{\dfrac{\left(1+3+5\right)^2}{a+b+c}}=\dfrac{2}{3}\left(a+b+c\right)+\dfrac{27}{\sqrt{a+b+c}}\)

\(\Rightarrow P\ge\dfrac{1}{2}\left(a+b+c\right)+\dfrac{27}{2\sqrt{a+b+c}}+\dfrac{27}{2\sqrt{a+b+c}}+\dfrac{1}{6}\left(a+b+c\right)\)

\(\Rightarrow P\ge3\sqrt[3]{\dfrac{27^2\left(a+b+c\right)}{2^3\left(a+b+c\right)}}+\dfrac{1}{6}.9=15\)

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(1;3;5\right)\)

Hi Mn
Xem chi tiết