Những câu hỏi liên quan
Trần Thị Hà Phương
Xem chi tiết
Akai Haruma
29 tháng 12 2018 lúc 15:21

Lời giải:

Dễ thấy $y=0$ không phải một nghiệm thỏa mãn

\(\Rightarrow y\neq 0\)

\(x^5+xy^4=y^{10}+y^6\Leftrightarrow x(x^4+y^4)=y^{10}+y^6>0\)

\(\Rightarrow x>0\)

Từ PT(1) \(\Rightarrow x^5+xy^4-(y^{10}+y^6)=0\)

\(\Leftrightarrow (x^5-y^{10})+(xy^4-y^6)=0\)

\(\Leftrightarrow (x-y^2)(x^4+x^3y^2+x^2y^4+xy^6+y^8)+y^4(x-y^2)=0\)

\(\Leftrightarrow (x-y^2)(x^4+x^3y^2+x^2y^4+xy^6+y^8+y^4)=0\)

Với mọi $x>0; y\neq 0$ ta luôn có:

\(x^4+x^3y^2+x^2y^4+xy^6+y^8+y^4>0\)

Do đó \(x-y^2=0\Rightarrow x=y^2\)

Thay vào PT(2):

\(\sqrt{4x+5}+\sqrt{x+8}=6\)

\(\Leftrightarrow (\sqrt{4x+5}-3)+(\sqrt{x+8}-3)=0\)

\(\Leftrightarrow \frac{4(x-1)}{\sqrt{4x+5}+3}+\frac{x-1}{\sqrt{x+8}+3}=0\)

\(\Leftrightarrow (x-1)\left(\frac{4}{\sqrt{4x+5}+3}+\frac{1}{\sqrt{x+8}+3}\right)=0\)

Hiển nhiên biểu thức trong " ngoặc lớn" lớn hơn $0$

\(\Rightarrow x-1=0\Rightarrow x=1\) (thỏa mãn)

\(\Rightarrow y^2=1\Rightarrow y=\pm 1\)

Vậy \((x,y)=(1,\pm 1)\)

Bình luận (0)
Hoàng Linh Chi
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết
Hồng Phúc
13 tháng 3 2021 lúc 21:07

Sửa đề: \(\left\{{}\begin{matrix}x^5+xy^4=y^{10}+y^6\\\sqrt{4x+5}+\sqrt{y^2+8}=6\end{matrix}\right.\)

ĐK: \(x\ge-\dfrac{5}{4}\)

Nếu \(y=0\Rightarrow\) Hệ đã cho vô nghiệm

Nếu \(y\ne0\)

 \(\left\{{}\begin{matrix}x^5+xy^4=y^{10}+y^6\left(1\right)\\\sqrt{4x+5}+\sqrt{y^2+8}=6\left(2\right)\end{matrix}\right.\)

Đặt \(\dfrac{x}{y}=t\), ta có:

\(\left(1\right)\Leftrightarrow\dfrac{x^5}{y^5}+\dfrac{x}{y}=y^5+y\)

\(\Leftrightarrow t^5+t=y^5+y\)

\(\Leftrightarrow\left(y-t\right)\left(y^4+ty^3+t^2y^2+t^3y+y^4\right)=0\)

Dễ chứng minh được \(y^4+ty^3+t^2y^2+t^3y+y^4\ne0\) nên \(y=t\Leftrightarrow x=y^2\)

\(\left(2\right)\Leftrightarrow\sqrt{4x+5}+\sqrt{x+8}=6\)

Đến đây dễ rồi, bình phương hai vế giải tiếp rồi kết luận.

Bình luận (0)
Hồng Phúc
13 tháng 3 2021 lúc 20:35

Đề lỗi không nhỉ.

Bình luận (0)
Mỹ Lệ
Xem chi tiết
Tú Thanh Hà
Xem chi tiết
𝓓𝓾𝔂 𝓐𝓷𝓱
3 tháng 2 2021 lúc 22:07

Câu 4:

Giả sử điều cần chứng minh là đúng

\(\Rightarrow x=y\), thay vào điều kiện ở đề bài, ta được:

\(\sqrt{x+2014}+\sqrt{2015-x}-\sqrt{2014-x}=\sqrt{x+2014}+\sqrt{2015-x}-\sqrt{2014-x}\) (luôn đúng)

Vậy điều cần chứng minh là đúng

Bình luận (3)
Đào Thu Hiền
3 tháng 2 2021 lúc 22:47

2) \(\sqrt{x^2-5x+4}+2\sqrt{x+5}=2\sqrt{x-4}+\sqrt{x^2+4x-5}\)

⇔ \(\sqrt{\left(x-4\right)\left(x-1\right)}-2\sqrt{x-4}+2\sqrt{x+5}-\sqrt{\left(x+5\right)\left(x-1\right)}=0\)

⇔ \(\sqrt{x-4}.\left(\sqrt{x-1}-2\right)-\sqrt{x+5}\left(\sqrt{x-1}-2\right)=0\)

⇔ \(\left(\sqrt{x-4}-\sqrt{x+5}\right)\left(\sqrt{x-1}-2\right)=0\)

⇔ \(\left[{}\begin{matrix}\sqrt{x-4}-\sqrt{x+5}=0\\\sqrt{x-1}-2=0\end{matrix}\right.\)

⇔ \(\left[{}\begin{matrix}\sqrt{x-4}=\sqrt{x+5}\\\sqrt{x-1}=2\end{matrix}\right.\)

⇔ \(\left[{}\begin{matrix}x\in\varnothing\\x=5\end{matrix}\right.\)

⇔ x = 5

Vậy S = {5}

Bình luận (0)
Akai Haruma
4 tháng 2 2021 lúc 1:17

Bài 1:

ĐKĐB suy ra $x(x+1)+y(y+1)=3x^2+xy-4x+2y+2$

$\Leftrightarrow 2x^2+x(y-5)+(y-y^2+2)=0$

Coi đây là PT bậc 2 ẩn $x$

$\Delta=(y-5)^2-4(y-y^2+2)=(3y-3)^2$Do đó:

$x=\frac{y+1}{2}$ hoặc $x=2-y$. Thay vào một trong 2 phương trình ban đầu ta thu được:

$(x,y)=(\frac{-4}{5}, \frac{-13}{5}); (1,1)$

Bình luận (0)
Tam Akm
Xem chi tiết
ILoveMath
Xem chi tiết
Kim Trí Ngân
Xem chi tiết
Adu Darkwa
Xem chi tiết
Trần Minh Hoàng
26 tháng 5 2021 lúc 19:22

\(\left\{{}\begin{matrix}2\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)=\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\left(1\right)\\16x^5-20x^3+5\sqrt{xy}=\sqrt{\dfrac{y+1}{2}}\left(2\right)\end{matrix}\right.\).

ĐKXĐ: \(xy>0;y\ge-\dfrac{1}{2}\).

Nhận thấy nếu x < 0 thì y < 0. Suy ra VT của (1) âm, còn VP của (1) dương (vô lí)

Do đó x > 0 nên y > 0.

Với a, b > 0 ta có bất đẳng thức \(\left(a+b\right)^4\le8\left(a^4+b^4\right)\).

Thật vậy, áp dụng bất đẳng thức Cauchy - Schwarz ta có:

\(\left(a+b\right)^4\le\left[2\left(a^2+b^2\right)\right]^2=4\left(a^2+b^2\right)^2\le8\left(a^4+b^4\right)\).

Dấu "=" xảy ra khi và chỉ khi a = b.

Áp dụng bất đẳng thức trên ta có:

\(\left(\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\right)^4\le8\left[8\left(x^4+y^4\right)+16x^2y^2\right]=64\left(x^2+y^2\right)^2\)

\(\Rightarrow\left(\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\right)^2\le8\left(x^2+y^2\right)\). (3)

Lại có \(4\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)^2=4\left(\dfrac{x^6}{y^4}+2xy+\dfrac{y^6}{x^4}\right)\). (4) 

Áp dụng bất đẳng thức AM - GM ta có \(\dfrac{x^6}{y^4}+xy+xy+xy+xy\ge5x^2;\dfrac{y^6}{x^4}+xy+xy+xy+xy\ge5y^2;3\left(x^2+y^2\right)\ge6xy\).

Cộng vế với vế của các bđt trên lại rồi tút gọn ta được \(\dfrac{x^6}{y^4}+2xy+\dfrac{y^6}{x^4}\ge2\left(x^2+y^2\right)\). (5)

Từ (3), (4), (5) suy ra \(4\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)^2\ge\left(\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\right)^2\Rightarrow2\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)\ge\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\).

Do đó đẳng thức ở (1) xảy ra nên ta phải có x = y.

Thay x = y vào (2) ta được:

\(16x^5-20x^3+5x=\sqrt{\dfrac{x+1}{2}}\). (ĐK: \(x>0\))

PT này có một nghiệm là x = 1 mà sau đó không biết giải ntn :v

 

 

Bình luận (0)