1.Tìm GTNN,GTLN của E = \(\dfrac{3-4x}{2x^2+2}\)
Tìm GTNN của phân thức: \(\dfrac{3+\left|2x-1\right|}{14}\)
Tìm GTLN của phân thức: \(\dfrac{-4x^2+4x}{15}\)
\(\left|2x-1\right|+3\ge3\Leftrightarrow\dfrac{3+\left|2x-1\right|}{14}\ge\dfrac{3}{14}\)
Dấu \("="\Leftrightarrow2x-1=0\Leftrightarrow x=\dfrac{1}{2}\)
\(\dfrac{-4x^2+4x}{15}=\dfrac{-4x^2+4x-1+1}{15}=\dfrac{-\left(2x-1\right)^2+1}{15}\)
Ta có \(-\left(2x-1\right)^2+1\le1\Leftrightarrow\dfrac{-\left(2x-1\right)^2+1}{15}\le\dfrac{1}{15}\)
Dấu \("="\Leftrightarrow2x-1=0\Leftrightarrow x=\dfrac{1}{2}\)
a, Tìm GTNN: A = \(\dfrac{x^2-2x+2013}{x^2}\) ; x>0
b, Tìm GTLN và GTNN của: B = \(\dfrac{4x+1}{4x^2+2}\)
a.
\(A=\dfrac{2013}{x^2}-\dfrac{2}{x}+1=2013\left(\dfrac{1}{x}-\dfrac{1}{2013}\right)^2+\dfrac{2012}{2013}\ge\dfrac{2012}{2013}\)
Dấu "=" xảy ra khi \(x=2013\)
b.
\(B=\dfrac{4x^2+2-4x^2+4x-1}{4x^2+2}=1-\dfrac{\left(2x-1\right)^2}{4x^2+2}\le1\)
\(B_{max}=1\) khi \(x=\dfrac{1}{2}\)
\(B=\dfrac{-2x^2-1+2x^2+4x+2}{4x^2+2}=-\dfrac{1}{2}+\dfrac{\left(x+1\right)^2}{2x^2+1}\ge-\dfrac{1}{2}\)
\(B_{max}=-\dfrac{1}{2}\) khi \(x=-1\)
1. tìm GTNN của A= x(x+2)(x+4)(x+6)+8
2. tìm GTLN của B=5+(1-x)(x+2)(x+3)(x+6)3
3.tìm GTNN của C=(x+3)4 + (x-7)4
4. Cho x>0. Tìm GTNN của P=\(\dfrac{4x^2+1}{2x}\)
1.
$x(x+2)(x+4)(x+6)+8$
$=x(x+6)(x+2)(x+4)+8=(x^2+6x)(x^2+6x+8)+8$
$=a(a+8)+8$ (đặt $x^2+6x=a$)
$=a^2+8a+8=(a+4)^2-8=(x^2+6x+4)^2-8\geq -8$
Vậy $A_{\min}=-8$ khi $x^2+6x+4=0\Leftrightarrow x=-3\pm \sqrt{5}$
2.
$B=5+(1-x)(x+2)(x+3)(x+6)=5-(x-1)(x+6)(x+2)(x+3)$
$=5-(x^2+5x-6)(x^2+5x+6)$
$=5-[(x^2+5x)^2-6^2]$
$=41-(x^2+5x)^2\leq 41$
Vậy $B_{\max}=41$. Giá trị này đạt tại $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$
3.
Đặt $x+3=a; 7-x=b$ thì $a+b=10$
$C=a^4+b^4$
Áp dụng BĐT Bunhiacopxky:
$(a^4+b^4)(1+1)\geq (a^2+b^2)^2$
$\Rightarrow C\geq \frac{(a^2+b^2)^2}{2}$
$(a^2+b^2)(1+1)\geq (a+b)^2=100$
$\Rightarrow a^2+b^2\geq 50$
$\Rightarrow C\geq \frac{50^2}{2}=1250$
Vậy $C_{\min}=1250$
Giá trị này đạt tại $a=b=5\Leftrightarrow x=2$
Tìm GTNN và GTLN nếu có của các biểu thức
\(A=\dfrac{2x^2-2x+5}{\left(x+1\right)^2}\)
\(B=\dfrac{4x^2+x+4}{x^2+x+1}\)
1.Tìm GTNN,GTLN của E = \(\frac{3-4x}{2x^2+2}\)
\(E=\frac{3-4x}{2x^2+2}=\frac{4x^2+4-\left(4x^2+4x+1\right)}{2x^2+2}=2-\frac{\left(2x+1\right)^2}{2x^2+2}\le2\forall x\)
Dấu "=" xảy ra khi: \(2x+1=0\Leftrightarrow x=-\frac{1}{2}\)
\(E=\frac{3-4x}{2x^2+2}=\frac{x^2-4x+4-\left(x^2+1\right)}{2x^2+2}=\frac{\left(x-2\right)^2}{2x^2+2}-\frac{1}{2}\ge-\frac{1}{2}\forall x\)
Dấu "=" xảy ra khi: \(x-2=0\Leftrightarrow x=2\)
tim gia tri cua x de bieu thuc
A=\(\dfrac{-4}{x^2-4x+10}\) co GTNN
B= -2 + 4x +1 co GTLN
C= \(\dfrac{2}{x^2+4x+5}\) co GTLN
D= \(\dfrac{5}{x^2-6x+12}\) co GTLN
E=\(\dfrac{x^2-2x+2018}{x^2}\) co GTNN
\(A=-\dfrac{4}{x^2-4x+10}\\ =-\dfrac{4}{\left(x^2-2.x.2+4+6\right)}\\ =-\dfrac{4}{\left(x-2\right)^2+6}\)
\(\left(x-2\right)^2\ge0\\ \Rightarrow\left(x-2\right)^2+6\ge6\\ \Rightarrow\dfrac{4}{\left(x-2\right)^2+6}\le\dfrac{2}{3}\\ \Rightarrow A=-\dfrac{4}{\left(x-2\right)^2+6}\ge-\dfrac{2}{3}\)
Min A=-2/3 khi x=2
\(C=\dfrac{2}{x^2+4x+5}=\dfrac{2}{\left(x+2\right)^2+1}\)
Vì \(\left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2+1\ge1\)
\(\Rightarrow C\le2\)
Dấu ''='' xảy ra \(\Leftrightarrow x=-2\)
Vậy Min C = 2 kjhi x = -2
Tìm GTNN, GTLN của biểu thức sau:
A=\(\dfrac{4x+3}{x^2+1}\)
\(A=\dfrac{4x+3}{x^2+1}\Leftrightarrow Ax^2+A=4x+3\\ \Leftrightarrow Ax^2-4x+A-3=0\)
Coi đây là PT bậc 2 ẩn x thì PT có nghiệm
\(\Leftrightarrow\Delta=16-4A\left(A-3\right)\ge0\\ \Leftrightarrow16-4A^2+12A\ge0\\ \Leftrightarrow-A^2+3A+4\ge0\\ \Leftrightarrow-1\le A\le4\)
Vậy \(A_{max}=4;A_{min}=-1\)
\(A_{max}=4\Leftrightarrow\dfrac{4x+3}{x^2+1}=4\Leftrightarrow4x^2-4x+1=0\\ \Leftrightarrow\left(2x-1\right)^2=0\Leftrightarrow x=\dfrac{1}{2}\\ A_{min}=-1\Leftrightarrow\dfrac{4x+3}{x^2+1}=-1\Leftrightarrow x^2+1=-4x-3\Leftrightarrow x^2+4x+4=0\\ \Leftrightarrow\left(x+2\right)^2=0\Leftrightarrow x=-2\)
Tìm GTNN của x^2+2x+3.
Tìm GTLN của (4x-3)/(2x+1)
\(x^2+2x+3\)
\(=\left(x^2+2x+1\right)+2\)
\(=\left(x+1\right)^2+2\)
Do \(\left(x+1\right)^2\ge0\) với mọi x
\(\Rightarrow x^2+2x+3\ge2\)
Dấu = khi x=-1
Gấp ạ mọi người giúp em với:<
1. Q = |-2x+3| + \(\dfrac{3}{4}\)
- Tìm GTNN (Giá trị nhỏ nhất) của Q
2. H = (2x+1)\(^2\) - 1\(\dfrac{1}{2}\)
- Tìm GTNN của H
3. M = =(2x+1)\(^2\) + 2021
- Tìm GTLN (Giá trị lớn nhất) của M
3:
Ta có: \(\left(2x+1\right)^2\ge0\forall x\)
\(\Leftrightarrow\left(2x+1\right)^2+2021\ge2021\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{1}{2}\)