rút gọn biểu thức
A=\(\dfrac{\sqrt{a}-1}{a\sqrt{a}-a+\sqrt{a}}:\dfrac{1}{a^2+\sqrt{a}}\) với a >0
B=\(\dfrac{\sqrt{a}+\sqrt{b}-1}{a+\sqrt{ab}}+\dfrac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}\left(\dfrac{\sqrt{b}}{a-\sqrt{ab}}+\dfrac{\sqrt{b}}{a+\sqrt{ab}}\right)\) với a>0 b>0 và a khác b
C=\(\dfrac{a\sqrt{b}+b}{a-b}.\sqrt{\dfrac{ab+b^2-2\sqrt{ab^3}}{a\left(a+2\sqrt{b}\right)+b}}:\dfrac{1}{\sqrt{a}+\sqrt{b}}\) với a>b>0
thực hiện phép tính
a)\(\sqrt{6+2\sqrt{5}}-\sqrt{62\sqrt{5}}\)
b)\(\sqrt{24-8\sqrt{5}}+\sqrt{9-4\sqrt{5}}\)
c) \(\sqrt{6-4\sqrt{2}}+\sqrt{22-12\sqrt{2}}\)
d)\(\sqrt{41+12\sqrt{5}}-\sqrt{46-6\sqrt{ }5}\)
e)\(\sqrt{17-12\sqrt{2}}+\sqrt{9+4\sqrt{2}}\)
f)\(\sqrt{17-12\sqrt{2}}+\sqrt{9+4\sqrt{2}}\)
g) \(\sqrt{43+24\sqrt{3}}-\sqrt{49-8\sqrt{3}}\)