Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
títtt
Xem chi tiết
Nguyễn Đức Trí
15 tháng 9 2023 lúc 19:47

1) \(f\left(x\right)=2x-5\)

\(f'\left(x\right)=2\)

\(\Rightarrow f'\left(4\right)=2\)

2) \(y=x^2-3\sqrt[]{x}+\dfrac{1}{x}\)

\(\Rightarrow y'=2x-\dfrac{3}{2\sqrt[]{x}}-\dfrac{1}{x^2}\)

3) \(f\left(x\right)=\dfrac{x+9}{x+3}+4\sqrt[]{x}\)

\(\Rightarrow f'\left(x\right)=\dfrac{1.\left(x+3\right)-1.\left(x+9\right)}{\left(x-3\right)^2}+\dfrac{4}{2\sqrt[]{x}}\)

\(\Rightarrow f'\left(x\right)=\dfrac{x+3-x-9}{\left(x-3\right)^2}+\dfrac{2}{\sqrt[]{x}}\)

\(\Rightarrow f'\left(x\right)=\dfrac{12}{\left(x-3\right)^2}+\dfrac{2}{\sqrt[]{x}}\)

\(\Rightarrow f'\left(x\right)=2\left[\dfrac{6}{\left(x-3\right)^2}+\dfrac{1}{\sqrt[]{x}}\right]\)

\(\Rightarrow f'\left(1\right)=2\left[\dfrac{6}{\left(1-3\right)^2}+\dfrac{1}{\sqrt[]{1}}\right]=2\left(\dfrac{3}{2}+1\right)=2.\dfrac{5}{2}=5\)

Nguyễn Lê Phước Thịnh
15 tháng 9 2023 lúc 19:42

loading...  loading...  

Phạm Lợi
Xem chi tiết
Trung Nguyen
3 tháng 3 2021 lúc 23:36

\(f\left(x\right)=\dfrac{x^2-1}{x^2}=1-\dfrac{1}{x^2}\)

\(\int f\left(x\right)dx=\int\left(1-\dfrac{1}{x^2}\right)dx=\int1dx-\int x^{-2}dx\)

=\(x-\dfrac{x^{-2+1}}{-2+1}+C=x-\dfrac{x^{-1}}{-1}+C=x+\dfrac{1}{x}+C\)

C=-1 ta được phương án A(ko tm câu hỏi)

C=0 ta được phương án B(ko tm câu hỏi)

C=2 ta được phương án C(ko tm câu hỏi)

=>chọn D

Crackinh
Xem chi tiết
Nguyễn Việt Lâm
11 tháng 3 2022 lúc 21:16

2.

\(I=\int e^{3x}.3^xdx\)

Đặt \(\left\{{}\begin{matrix}u=3^x\\dv=e^{3x}dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=3^xln3dx\\v=\dfrac{1}{3}e^{3x}\end{matrix}\right.\)

\(\Rightarrow I=\dfrac{1}{3}e^{3x}.3^x-\dfrac{ln3}{3}\int e^{3x}.3^xdx=\dfrac{1}{3}e^{3x}.3^x-\dfrac{ln3}{3}.I\)

\(\Rightarrow\left(1+\dfrac{ln3}{3}\right)I=\dfrac{1}{3}e^{3x}.3^x\)

\(\Rightarrow I=\dfrac{1}{3+ln3}.e^{3x}.3^x+C\)

Nguyễn Việt Lâm
11 tháng 3 2022 lúc 21:17

1.

\(I=\int\left(2x-1\right)e^{\dfrac{1}{x}}dx=\int2x.e^{\dfrac{1}{x}}dx-\int e^{\dfrac{1}{x}}dx\)

Xét \(J=\int2x.e^{\dfrac{1}{x}}dx\)

Đặt \(\left\{{}\begin{matrix}u=e^{\dfrac{1}{x}}\\dv=2xdx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=-\dfrac{e^{\dfrac{1}{x}}}{x^2}dx\\v=x^2\end{matrix}\right.\)

\(\Rightarrow J=x^2.e^{\dfrac{1}{x}}+\int e^{\dfrac{1}{x}}dx\)

\(\Rightarrow I=x^2.e^{\dfrac{1}{x}}+C\)

Technology I
9 tháng 1 lúc 22:41

Để tìm nguyên hàm của hàm số, ta cần xác định giá trị của hàm tại một điểm nào đó.

Trong trường hợp này, ta chọn điểm nhân nguyên tố nhất là 3.

Để tính giá trị của hàm tại điểm 3, ta đặt x=3 vào hàm số:

 

f ( x )

( 2 x − 1 ) e 1 x

= ( 2 ( 3 ) − 1 ) e 1 ( 3 )

= ( 6 − 1 ) e 1 3

= ( 5 ) e 1 3

 

f ( x )

e 3 x

= e 3 ( 3 )

= e 3 3

Ta tiến hành tính toán:

 

f ( 3 )

( 5 ) e 1 3

= 5 e 1 3

 

f ( 3 )

e 3 3

= e 3 3

Như vậy, giá trị của hàm tại điểm 3 là 5e^3 hoặc e^33, tùy thuộc vào hàm số cụ thể.

Tóm lại, để tìm nguyên hàm của hàm số, ta đã tìm được rằng giá trị của hàm tại điểm 3 là 5e^3 hoặc e^33, tùy thuộc vào hàm số cụ thể.

Luân Trần
Xem chi tiết
Akai Haruma
15 tháng 3 2021 lúc 13:42

Lời giải:

\(\int f(x)dx=\int \frac{x^2+2x}{x+1}dx=\int \frac{(x+1)^2-1}{x+1}dx=\int (x+1-\frac{1}{x+1})dx\)

\(=\int (x+1)dx-\int \frac{1}{x+1}dx=\frac{x^2}{2}+x-\ln |x+1|+c\)

Nguyễn Kiều Anh
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 4 2021 lúc 22:04

a. \(y'=\dfrac{-1}{\left(x-1\right)}\)

b. \(y'=\dfrac{5}{\left(1-3x\right)^2}\)

c. \(y=\dfrac{\left(x+1\right)^2+1}{x+1}=x+1+\dfrac{1}{x+1}\Rightarrow y'=1-\dfrac{1}{\left(x+1\right)^2}=\dfrac{x^2+2x}{\left(x+1\right)^2}\)

d. \(y'=\dfrac{4x\left(x^2-2x-3\right)-2x^2\left(2x-2\right)}{\left(x^2-2x-3\right)^2}=\dfrac{-4x^2-12x}{\left(x^2-2x-3\right)^2}\)

e. \(y'=1+\dfrac{2}{\left(x-1\right)^2}=\dfrac{x^2-2x+3}{\left(x-1\right)^2}\)

g. \(y'=\dfrac{\left(4x-4\right)\left(2x+1\right)-2\left(2x^2-4x+5\right)}{\left(2x+1\right)^2}=\dfrac{4x^2+4x-14}{\left(2x+1\right)^2}\)

Nguyễn Việt Lâm
30 tháng 4 2021 lúc 22:15

2.

a. \(y'=4\left(x^2+x+1\right)^3.\left(x^2+x+1\right)'=4\left(x^2+x+1\right)^3\left(2x+1\right)\)

b. \(y'=5\left(1-2x^2\right)^4.\left(1-2x^2\right)'=-20x\left(1-2x^2\right)^4\)

c. \(y'=3\left(\dfrac{2x+1}{x-1}\right)^2.\left(\dfrac{2x+1}{x-1}\right)'=3\left(\dfrac{2x+1}{x-1}\right)^2.\left(\dfrac{-3}{\left(x-1\right)^2}\right)=\dfrac{-9\left(2x+1\right)^2}{\left(x-1\right)^4}\)

d. \(y'=\dfrac{2\left(x+1\right)\left(x-1\right)^3-3\left(x-1\right)^2\left(x+1\right)^2}{\left(x-1\right)^6}=\dfrac{-x^2-6x-5}{\left(x-1\right)^4}\)

e. \(y'=-\dfrac{\left[\left(x^2-2x+5\right)^2\right]'}{\left(x^2-2x+5\right)^4}=-\dfrac{2\left(x^2-2x+5\right)\left(2x-2\right)}{\left(x^2-2x+5\right)^4}=-\dfrac{4\left(x-1\right)}{\left(x^2-2x+5\right)^3}\)

f. \(y'=4\left(3-2x^2\right)^3.\left(3-2x^2\right)'=-16x\left(3-2x^2\right)^3\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
22 tháng 6 2017 lúc 12:18

Đáp án C

AllesKlar
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 4 2022 lúc 21:36

Chọn B

聪明的 ( boy lạnh lùng )
14 tháng 4 2022 lúc 21:36

B

anime khắc nguyệt
14 tháng 4 2022 lúc 21:37

B

Văn Quyết
Xem chi tiết
Tài khoản bị khóa
Xem chi tiết