Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
vaqddddd
Xem chi tiết
ManDoo Ami 태국
Xem chi tiết
Lê Thị Thục Hiền
26 tháng 7 2021 lúc 16:06

Câu 6:C

Câu 8:C

Câu 9:Tìm phần bù của B trong A có nghĩa là tìm A\B

Ý D

Nguyễn Lê Phước Thịnh
26 tháng 7 2021 lúc 23:05

Câu 6: C

Câu 8: C

Câu 9: D

Big City Boy
Xem chi tiết
Trần Minh Hoàng
27 tháng 12 2020 lúc 18:43

Ta có \(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\Leftrightarrow ayz+bzx+cxy=0\).

Do đó: \(ax^2+by^2+cz^2=\left(ax+by+cz\right)\left(x+y+z\right)-axy-axz-byz-byx-czx-czy=0-xy\left(a+b\right)-yz\left(b+c\right)-zx\left(c+a\right)=0+xyc+yza+zxb=0\).

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
5 tháng 7 2019 lúc 7:55

SB →  = (1; 2; -2). Phương trình (P): x + 2y - 2z = 0.

Big City Boy
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 12 2020 lúc 16:11

\(a+b=-c\Leftrightarrow\left(a+b\right)^3=-c^3\)

\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\)

\(\Leftrightarrow a^3+b^3+c^3=-3ab\left(a+b\right)=3abc\)

\(A=\dfrac{a^3+b^3+c^3}{abc}=\dfrac{3abc}{abc}=3\)

Nguyễn Quốc Khánh
Xem chi tiết
tth_new
22 tháng 4 2019 lúc 19:23

a)Mình nghĩ là chứng minh \(A\left(2\right).A\left(-1\right)\le0\)mới đúng chớ! Mình làm theo đề đã sửa nhé!

Ta có: \(A\left(2\right)=4a+2b+c\) 

\(A\left(-1\right)=a-b+c\)

Suy ra \(A\left(2\right)+A\left(-1\right)=5a+b+2c=0\)

Suy ra \(A\left(2\right)=-A\left(-1\right)\)

Thay vào,ta có: \(A\left(2\right).A\left(-1\right)=-\left[A\left(-1\right)\right]^2\le0\) (đúng)

b)Theo đề bài A(x) = 0 với mọi x nên:
\(A\left(1\right)=a+b+c=0\Rightarrow a=-b-c\) (1)

\(A\left(-1\right)=a-b+c=0\Rightarrow b=a+c\) (2)

Cộng (1) và (2) lại,ta được: \(a+b=a-b\Leftrightarrow2b=0\Leftrightarrow b=0\) (*)

Khi đó \(A\left(x\right)=ax^2+c=0\forall x\)

\(\Rightarrow A\left(1\right)=a+c=0\Rightarrow a=-c\) (3)

\(A\left(2\right)=4a+c=0\Leftrightarrow-4a=c\) (4)

Cộng theo vế (3) và (4) suy ra \(-3a=0\Leftrightarrow a=0\) (**)

Thay a = b = 0 vào,ta có: \(A\left(x\right)=c=0\forall x\)(***)

Từ (*);(**) và (***) ta có a = b =c = 0 (đpcm)

Đúng ko ta?

Vũ Phạm Hoài
Xem chi tiết
bach le hoang
Xem chi tiết
Kudo Shinichi
21 tháng 7 2021 lúc 14:41

Ta có :

 \(ac=b^2\Leftrightarrow\dfrac{a}{b}=\dfrac{b}{c}\left(1\right)\\ ab=c^2\Leftrightarrow\dfrac{b}{c}=\dfrac{c}{a}\left(2\right)\) 

Từ (1) và (2) suy ra: \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}\)

                                Và \(a+b+c\ne0\)

Áp dụng tính chất dãy tỉ số bằng ta có :

   \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}=\dfrac{a+b+c}{b+c+a}=1\\ \Rightarrow a=b=c\)

  Ta có :

\(\dfrac{b^{3333}}{a^{1111}.c^{2222}}=\dfrac{b^{3333}}{b^{1111}.b^{2222}}=\dfrac{b^{3333}}{b^{3333}}=1\)

    Vậy \(\dfrac{b^{3333}}{a^{1111}.c^{2222}}=1\)

 

Kudo Shinichi
21 tháng 7 2021 lúc 9:11

Bạn ơi \(\dfrac{b^{3333}}{a^{1111}.c^{2222}}\) chứ ạ !

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
28 tháng 5 2018 lúc 6:42

a) Chú ý m > 2 thì m > 0.

b) Chú ý a < 0 và b < 0 thì ab > 0. Khi đó a > b, nhân hai vế với 1 ab > 0  ta thu được  1 b > 1 a . Tương tự a > 0, b > 0, a > b ta được  1 a < 1 b .

Trần Thu Linh
Xem chi tiết
Mr Lazy
8 tháng 8 2015 lúc 13:25

Một số bất đẳng thức thường được dùng (chứng minh rất đơn giản)

Với a, b > 0, ta có: 

\(a^2+b^2\ge2ab\)

\(\left(a+b\right)^2\ge4ab\)

\(2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)

\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

Dấu "=" của các bất đẳng thức trên đều xảy ra khi a = b.

Phân phối số hạng hợp lí để áp dụng Côsi

\(1\text{) }P=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{2ab}\ge\frac{4}{a^2+b^2+2ab}+\frac{1}{\frac{\left(a+b\right)^2}{2}}=\frac{4}{\left(a+b\right)^2}+\frac{2}{\left(a+b\right)^2}\)

\(\ge6\)

Dấu "=" xảy ra khi a = b = 1/2.

\(2\text{) }P\ge\frac{4}{a^2+b^2+2ab}=\frac{4}{\left(a+b\right)^2}\ge4\)

\(3\text{) }P=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{4ab}+4ab+\frac{1}{4ab}\)

\(\ge\frac{1}{\left(a+b\right)^2}+2\sqrt{\frac{1}{4ab}.4ab}+\frac{1}{\left(a+b\right)^2}\ge1+2+1=4\)