Ta có \(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\Leftrightarrow ayz+bzx+cxy=0\).
Do đó: \(ax^2+by^2+cz^2=\left(ax+by+cz\right)\left(x+y+z\right)-axy-axz-byz-byx-czx-czy=0-xy\left(a+b\right)-yz\left(b+c\right)-zx\left(c+a\right)=0+xyc+yza+zxb=0\).
Ta có \(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\Leftrightarrow ayz+bzx+cxy=0\).
Do đó: \(ax^2+by^2+cz^2=\left(ax+by+cz\right)\left(x+y+z\right)-axy-axz-byz-byx-czx-czy=0-xy\left(a+b\right)-yz\left(b+c\right)-zx\left(c+a\right)=0+xyc+yza+zxb=0\).
cho: a + b + c = x + y + z = \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\)
CMR: ax2 + by2 + cz2 = 0
Cho \(a+b+c=x+y+z=\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}\)
CMR: \(ax^2+by^2+cz^2=0\)
Cho x2-yz =a
y2 -xz=b
z2- xy=c (x, y,z ≠0)
CMR: ax+by+cz= (x+y+z)(a+b+c)
Cho a+b+c=0 , x+y+z =0, \(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\)
Chứng minh rằng :ax2+ by2 + cz2=0
Cho: \(\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\)và x, y, z khác 0
CMR: \(\dfrac{x^2+y^2+z^2}{\left(ax+by+cz\right)^2}=\dfrac{1}{a^2+b^2+c^2}\)
\(Cho\) \(ax+by+cz=0;a+b+c=\dfrac{1}{2018}\) . CMR: \(\dfrac{ax^{2\:}+by^2+cz^2}{bc\left(y-z\right)^2+ac\left(x-z\right)^2+ab\left(x-y\right)^2}=2018\)
Cho \(\left\{{}\begin{matrix}x^2-yz=a\\y^2-xz=b\\z^2-xy=c\end{matrix}\right.\) với x, y, z thuộc Z và x, y, z khác 0. Chứng minh:\(ax+by+cz⋮x+y+z\); a, b, c, d là các số nguyên khác nhau
x = by+cz, y = ax + cz, x+y+z khác 0, xyz khác 0
Chứng minh 1/(1+a) + 1/(1+b) + 1/(1+c) = 2
Cho \(a+b+c=x+y+z=\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\) .Chứng minh rằng:\(ax^2+by^2+cz^2=0\)