rút gọn (2x^3+x^2+2x+4)/(2x+1)
Tính (rút gọn )
1, 2x(3x-1)-(2x+1)(x-3)
2, 3(x^2-2x)-(4x+2)(x-1)
3, 3x(x-5)-(x-2)^2 -(2x+3)(2x-3)
4, (2x-3)^2+(2x-1) (x+4)
1) `2x(3x-1)-(2x+1)(x-3)`
`=6x^2-2x-2x^2+6x-x+3`
`=4x^2+3x+3`
2) `3(x^2-3x)-(4x+2)(x-1)`
`=3x^2-9x-4x^2+4x-2x+2`
`=-x^2-7x+2`
3) `3x(x-5)-(x-2)^2-(2x+3)(2x-3)`
`=3x^2-15x-(x^2-4x+4)-(4x^2-9)`
`=3x^2-15x-x^2+4x-4-4x^2+9`
`=-2x^2-11x+5`
4) `(2x-3)^2+(2x-1)(x+4)`
`=4x^2-12x+9+2x^2+8x-x-4`
`=6x^2-5x+5`
\(D=\left(2x+1\right)^2-\left(2x-3\right)^2+6x\)
\(D=\left(4x^2+4x+1\right)-\left(4x^2-12x+9\right)+6x\)
\(D=\left(4x^2-4x^2\right)+\left(4x-12x+6x\right)+\left(1-9\right)\)
\(D=-2x-8\)
_______________________
\(E=\left(x-4\right)^2-x\left(x+2\right)-2x+3\)
\(E=\left(x^2-8x+16\right)-\left(x^2+2x\right)-2x+3\)
\(E=\left(x^2-x^2\right)-\left(8x+2x+2x\right)+\left(16+3\right)\)
\(E=-12x+19\)
\(D=\left(2x+1\right)^2-\left(2x-3\right)^2+6x\)
\(D=\left[\left(2x\right)^2+2.2x.1+1^2\right]-\left[\left(2x\right)^2-2.2x.3+3^2\right]+6x\)
\(D=4x^2+4x+1-\left(4x^2-12x+9\right)+6x\)
\(D=4x^2+4x+1-4x^2+12x-9+6x\)
\(D=22x-8\)
___________
\(E=\left(x-4\right)^2-x\left(x+2\right)-2x+3\)
\(E=\left(x^2-2.x.4+4^2\right)-\left(x^2+2x\right)-2x+3\)
\(E=x^2-8x+16-x^2-2x-2x+3\)
\(E=-12x+19\)
a) Rút gọn biểu thức D = (2x + 1)2 - (2x - 3)2 + 6x:
Bắt đầu bằng việc mở ngoặc:
D = (4x^2 + 4x + 1) - (4x^2 - 12x + 9) + 6x
Tiếp theo, kết hợp các thành phần tương tự:
D = 4x^2 + 4x + 1 - 4x^2 + 12x - 9 + 6x
Tiếp tục đơn giản hóa:
D = 4x^2 - 4x^2 + 4x + 12x + 6x + 1 - 9
Kết quả cuối cùng:
D = 22x - 8
b) Rút gọn biểu thức E = (x - 4)2 - x(x + 2) - 2x + 3:
Bắt đầu bằng việc mở ngoặc:
E = (x^2 - 8x + 16) - (x^2 + 2x) - 2x + 3
Tiếp theo, kết hợp các thành phần tương tự:
E = x^2 - 8x + 16 - x^2 - 2x - 2x + 3
Tiếp tục đơn giản hóa:
E = x^2 - x^2 - 8x - 2x - 2x + 16 + 3
Kết quả cuối cùng:
E = -12x + 19
Rút gọn
a)(x-3)2-x.(x-6)
b)(2x+1)2-(3+2x).(2x-3)-4.(x+2)
c)(2x2-3x+1):(x-1)
\(a,=x^2-6x+9-x^2+6x=9\\ b,=4x^2+4x+1-4x^2+9-4x-8=2\\ c,=\left(2x^2-2x-x+1\right):\left(x-1\right)\\ =\left(x-1\right)\left(2x-1\right):\left(x-1\right)=2x-1\)
`a)(x-3)^2-x(x-6)`
`=x^2-6x+9-x^2+6x=9`
`b)(2x+1)^2-(3+2x)(2x-3)-4(x+2)`
`=4x^2+4x+1-(4x^2-9)-4x-8`
`=2`
`c)(2x^2-3x+1):(x-1)`
`=(2x^2-2x-x+1):(x-1)`
`=[2x(x-1)-(x-1)]:(x-1)`
`=2x-1`
a) \(\left(x-3\right)^2-x\left(x-6\right)=x^2-6x+9-x^2+6x=9\)
b) \(\left(2x+1\right)^2-\left(3+2x\right)\left(2x-3\right)-4\left(x+2\right)=4x^2+4x+1-4x^2+9-4x-8=2\)
c) \(\left(2x^2-3x+1\right):\left(x-1\right)=\left[2x\left(x-1\right)-\left(x-1\right)\right]:\left(x-1\right)=\left[\left(x-1\right)\left(2x-1\right)\right]:\left(x-1\right)=2x-1\)
Rút gọn biểu thức :
a. (2x+1)^2 +(2x-1)^2 -2(1+2x)(2X-1)
B (x-1)^3 -(x+2)(x^2-2X+4)+3(x-1)(x+1)
Answer:
\(\left(2x+1\right)^2+\left(2x-1\right)^2-2\left(1+2x\right)\left(2x-1\right)\)
\(=(4x^2+4x+1)+(4x^2-4x+1)-2(4x^2-1)\)
\(=4x^2+4x+1+4x^2-4x+1-8x^2+2\)
\(=(4x^2+4x^2-8x^2)+(4x-4x)+(1+1+2)\)
\(=4\)
\((x-1)^3-(x+2)(x^2-2x+4)+3(x-1)(x+1)\)
\(=(x^3-3x^2+3x-1)-(x^3+8)+3(x^2-1)\)
\(=x^3-3x^2+3x-1-x^3-8+3x^2-3\)
\(=(x^3-x^3)+(-3x^2+3x^2)+3x+(-1-8-3)\)
\(=3x-12\)
rút gọn biểu thức
3)C = (2x-3)^2-(x+4)(2x-1) -(x+3)^2
C = (2x-3)2-(x+4)(2x-1) -(x+3)2
(Chuyển đổi các hằng đẳng thức)
= (4x2-12x+9)-(2x2-x+8x-4)-(x2+6x+9)
= 4x2-12x+9-2x2+x-8x+4-x2-6x-9
(Ta thu gọn các hạng tử đồng dạng với nhau)
= x2-25x-14
Rút gọn biểu thức:
a) (x + 2)(x – 2) – (x + 1)2
b) (2x – 1)(4x2 + 2x + 1) – (2x + 1)( 4x2 – 2x + 1)
3. Tìm x biết:
a) (x + 2)(x2 – 2x + 4) – x(x2 – 2) = 15
b) (x – 1)3 – x(x2 – 3x – 4) = 13
thanks
\(a,=x^2-4-x^2-2x-1=-2x-5\\ b,=8x^3-1-8x^3-1=-2\\ 3,\\ a,\Rightarrow x^3+8-x^3+2x=15\\ \Rightarrow2x=7\Rightarrow x=\dfrac{7}{2}\\ b,\Rightarrow x^3-3x^2+3x-1-x^3+3x^2+4x=13\\ \Rightarrow7x=14\Rightarrow x=2\)
Bài 2:
a) \(=x^2-4-x^2-2x-1=-2x-5\)
b) \(=8x^3-1-8x^3-1=-2\)
Bài 3:
a) \(\Rightarrow x^3+8-x^3+2x=15\)
\(\Rightarrow2x=7\Rightarrow x=\dfrac{7}{2}\)
b) \(\Rightarrow x^3-3x^2+3x-1-x^3+3x^2+4x=13\)
\(\Rightarrow7x=14\Rightarrow x=2\)
a)(x+3)(x-1)-x(x-5) b)(2x-3)(2x+3)-4(x+2)^2 c)(x-1)^3-(x+2)(x^2-2x+4)+3x^2 Rút gọn biểu thức
a) \(\left(x+3\right)\left(x-1\right)-x\left(x-5\right)=x^2+2x-3-x^2+5x=7x-3\)
b) \(\left(2x-3\right)\left(2x+3\right)-4\left(x+2\right)^2=4x^2-9-4x^2-16x-16=-16x-25\)
c) \(=x^3-3x^2+3x-1-x^3-8+3x^2=3x-9\)
(x+5).(x-4)-(x+2)^2+(2x+3)^3= (4x^2+1)+18(2x+3) rút gọn
Rút gọn :
1. (2x-5)(3x+1)-(x-3)^2+(2x+5)^2-(3x+1)^3
2. (2x-1)(2x+1)-3x-2)(2x+3)-(x-1)^3+(2x+3)^3
3. (x-2)(x^2+2x+4)-(3x-2)^3+(3x-4)^2
4. (7x-1)(8x+2)-(2x-7)^2-(x-4)^3-(3x+1)^3
5. (5x-1)(5x+1)-(x+3)(x^2-3x+9)-(2x+4)^2-(3x-4)^2+(2x-5)^3
6. (4x-1)(x+2)-(2x+5)^2-(3x-7)^2+(2x+3)^3=(3x-1)^3
1: \(=6x^2+2x-15x-5-x^2+6x-9+4x^2+20x+25-27x^3-27x^2-9x-1\)
=-27x^3-18x^2+4x+10
2: =4x^2-1-6x^2-9x+4x+6-x^3+3x^2-3x+1+8x^3+36x^2+54x+27
=7x^3+37x^2+46x+33
5:
\(=25x^2-1-x^3-27-4x^2-16x-16-9x^2+24x-16+\left(2x-5\right)^3\)
\(=8x^3-60x^2+150-125+12x^2-x^3+8x-60\)
=7x^3-48x^2+8x-35
btap toán: tìm đkxđ và rút gọn 1)x²+2x+1/x+1 2)x²-6x+9/x(x-3) 3)x²-4/2x(x+2) 4)x²-2x/5x²-10x
`1)` Biểu thức xác định `<=>x+1 \ne 0<=>x \ne -1`
`[x^2+2x+1]/[x+1]=[(x+1)^2]/[x+1]=x+1`
`2)` Bth xác định `<=>x(x-3) \ne 0<=>{(x \ne 0),(x \ne 3):}`
`[x^2-6x+9]/[x(x-3)]=[(x-3)^]/[x(x-3)]=[x-3]/x`
`3)` Bth xác định `<=>2x(x+2) \ne 0<=>{(x \ne 0),(x \ne -2):}`
`[x^2-4]/[2x(x+2)]=[(x-2)(x+2)]/[2x(x+2)]=[x-2]/[2x]`
`4)` Bth xác định `<=>5x^2-10x \ne 0<=>5x(x-2) \ne 0<=>{(x \ne 0),(x \ne 2):}`
`[x^2-2x]/[5x^2-10x]=[x(x-2)]/[5x(x-2)]=1/5`
1)
\(ĐKXĐ:x\ne-1\)
\(\dfrac{x^2+2x+1}{x+1}\\ =\dfrac{\left(x+1\right)^2}{x+1}\\ =x+1\)
2)
ĐKXĐ x khác 0 và x khác 3
\(\dfrac{x^2-6x+9}{x\left(x-3\right)}\\ =\dfrac{\left(x-3\right)^2}{x\left(x-3\right)}\\ =\dfrac{x-3}{x}\)
3)
ĐKXĐ: x khác 0 và x khác -2
\(\dfrac{x^2-4}{2x\left(x+2\right)}\\ =\dfrac{\left(x-2\right)\left(x+2\right)}{2x\left(x+2\right)}\\ =\dfrac{x-2}{2x}\)
4)
DKXĐ: x khác 0 và x khác 2
\(\dfrac{x^2-2x}{5x^2-10x}\\ =\dfrac{x\left(x-2\right)}{5x\left(x-2\right)}\\ =\dfrac{1}{5}\)
đk `x≠-1`
`(x^2+2x+1)/(x+1)`
`=((x+1)^2)/(x+1)`
`=x+1`
---------
đk \(\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\x\ne3\end{matrix}\right.\)
`(x^2-6x+9)/(x(x-3))`
`=((x-3)^2)/(x(x-3))`
`=(x-3)/x`
--------
đk \(\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\x\ne-2\end{matrix}\right.\)
`(x^2-4)/(2x(x+2))`
`=((x-2)(x+2))/(2x(x+2))`
`=(x-2)/(2x)`
--------
đk \(\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\x\ne2\end{matrix}\right.\)
`(x^2-2x)/(5x^2-10x)`
`=(x(x-2))/(5x(x-2))`
`=x/(5x)`