tìm x
| 3x + 2 | - 2 - 3x = 0
tìm x
a) x2 - 5x = 0
b) 3x ( x - 2 ) + 2( 2 - x ) = 0
c) 5x ( 3x - 1 ) + x( 3x - 1 ) - 2( 3x - 1) = 0
a)
\(\Rightarrow x\left(x-5\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=0\\x-5=0\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=0\\x=5\end{array}\right.\)
b)
\(\Rightarrow3x\left(x-2\right)-2\left(x-2\right)=0\)
\(\Rightarrow\left(x-2\right)\left(3x-2\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}x-2=0\\3x-2=0\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}x=2\\x=\frac{2}{3}\end{array}\right.\)
c)
\(\Rightarrow\left(3x-1\right)\left(5x+x-2\right)=0\)
\(\Rightarrow\left(3x-2\right)^2.2=0\)
\(\Rightarrow3x-2=0\)
\(\Rightarrow x=\frac{2}{3}\)
Tìm x
a)3x(x-2)+2(2-x)=0
b)5x(3x-1)+x(3x-1)-2(3x-1)=0
a)\(3x\left(x-2\right)+2\left(2-x\right)=0\)
\(\Leftrightarrow3x\left(x-2\right)-2\left(x-2\right)=0\)
\(\Leftrightarrow\left(3x-2\right)\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x-2=0\\x-2=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=2\end{cases}}\)
b)\(5x\left(3x-1\right)+x\left(3x-1\right)-2\left(3x-1\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(5x+x-2\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(6x-2\right)=0\)
\(\Leftrightarrow2\left(3x-1\right)\left(3x-1\right)=0\)
\(\Leftrightarrow\left(3x-1\right)^2=0\Rightarrow3x-1=0\Rightarrow x=\frac{1}{3}\)
a/3x(x-2)+2(2-x)=0
=>(2-3x)(2-x)=0
=>\(\orbr{\begin{cases}2-3x=0\\2-x=0\end{cases}}\)=>\(\orbr{\begin{cases}3x=2\\x=2\end{cases}}\)=>\(\orbr{\begin{cases}x=\frac{2}{3}\\x=2\end{cases}}\)
b/5x(3x-1)+x(3x-1)-2(3x-1)=0
=>(5x+x-2)(3x-1)=0
=>(6x-2)(3x-1)=0
=>\(\orbr{\begin{cases}6x-2=0\\3x-1=0\end{cases}}\)=>\(\orbr{\begin{cases}6x=2\\3x=1\end{cases}}\)=>x=\(\frac{1}{3}\)
Bài 1: Tìm x biết a) x^3 - 4x^2 - x + 4= 0 b) x^3 - 3x^2 + 3x + 1=0 c) x^3 + 3x^2 - 4x - 12=0 d) (x-2)^2 - 4x +8 =0
a: \(x^3-4x^2-x+4=0\)
=>\(\left(x^3-4x^2\right)-\left(x-4\right)=0\)
=>\(x^2\left(x-4\right)-\left(x-4\right)=0\)
=>\(\left(x-4\right)\left(x^2-1\right)=0\)
=>\(\left[{}\begin{matrix}x-4=0\\x^2-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x^2=1\end{matrix}\right.\Leftrightarrow x\in\left\{2;1;-1\right\}\)
b: Sửa đề: \(x^3+3x^2+3x+1=0\)
=>\(x^3+3\cdot x^2\cdot1+3\cdot x\cdot1^2+1^3=0\)
=>\(\left(x+1\right)^3=0\)
=>x+1=0
=>x=-1
c: \(x^3+3x^2-4x-12=0\)
=>\(\left(x^3+3x^2\right)-\left(4x+12\right)=0\)
=>\(x^2\cdot\left(x+3\right)-4\left(x+3\right)=0\)
=>\(\left(x+3\right)\left(x^2-4\right)=0\)
=>\(\left(x+3\right)\left(x-2\right)\left(x+2\right)=0\)
=>\(\left[{}\begin{matrix}x+3=0\\x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\\x=-2\end{matrix}\right.\)
d: \(\left(x-2\right)^2-4x+8=0\)
=>\(\left(x-2\right)^2-\left(4x-8\right)=0\)
=>\(\left(x-2\right)^2-4\left(x-2\right)=0\)
=>\(\left(x-2\right)\left(x-2-4\right)=0\)
=>(x-2)(x-6)=0
=>\(\left[{}\begin{matrix}x-2=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\)
Bài 4 : Tìm x biết
a)x( x-2 ) + x - 2 = 0
a) 5x( x-3 ) - x+3 = 0
b) (3x + 5)(4 – 3x) = 0
c) 3x(x – 7) – 2(x – 7) = 0
a) \(\Rightarrow\left(x-2\right)\left(x+1\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
b) \(\Rightarrow\left(x-3\right)\left(5x-1\right)=0\Rightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{5}\end{matrix}\right.\)
c) \(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{5}{3}\\x=\dfrac{4}{3}\end{matrix}\right.\)
d) \(\Rightarrow\left(x-7\right)\left(3x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=7\\x=\dfrac{2}{3}\end{matrix}\right.\)
\(a,\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\\ b,\Leftrightarrow\left(x-3\right)\left(5x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{5}\end{matrix}\right.\\ c,\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{5}{3}\\x=\dfrac{4}{3}\end{matrix}\right.\\ d,\Leftrightarrow\left(x-7\right)\left(3x-2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=7\\x=\dfrac{2}{3}\end{matrix}\right.\)
Tìm x biết:
\(a) x^2+3x-10=0 \)
\(b) x^2-5x-6=0\)
\(c) 2x^2+3x-2=0\)
a: Ta có: \(x^2+3x-10=0\)
\(\Leftrightarrow\left(x+5\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)
b: Ta có: \(x^2-5x-6=0\)
\(\Leftrightarrow\left(x-6\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-1\end{matrix}\right.\)
Tìm x:
C, X^2-9=2×(x+3)^2
b, x^3-3x^2+3x-1=0
d, x^2-8x+3x-24=0
Giúp mk với. Mk cảm ơn
c) \(x^2-9=2\cdot\left(x+3\right)^2\)
\(\Leftrightarrow\left(x-3\right)\left(x+3\right)-2\left(x+3\right)^2=0\)
\(\Leftrightarrow\left(x+3\right)\left[x-3-2\left(x+3\right)\right]=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-3-2x-6\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(-x-9\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-9\end{matrix}\right.\)
b) \(x^3-3x^2+3x-1=0\)
\(\Leftrightarrow x^3-3\cdot x^2\cdot1+3\cdot x\cdot1^2-1^3=0\)
\(\Leftrightarrow\left(x-1\right)^3=0\)
\(\Leftrightarrow x-1=0\)
\(\Leftrightarrow x=1\)
d) \(x^2-8x+3x-24=0\)
\(\Leftrightarrow\left(x^2-8x\right)+\left(3x-24\right)=0\)
\(\Leftrightarrow x\left(x-8\right)+3\left(x-8\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-8=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=8\end{matrix}\right.\)
a) \(x^2-9=2\left(x+3\right)^2\)
\(\Leftrightarrow\left(x+3\right)\left(x-3\right)=2\left(x+3\right)^2\)
\(\Leftrightarrow2\left(x+3\right)^2-\left(x+3\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left[2\left(x+3\right)-\left(x-3\right)\right]=0\)
\(\Leftrightarrow\left(x+3\right)\left[2x+6-x+3\right]=0\)
\(\Leftrightarrow\left(x+3\right)\left(x+9\right)=0\)
\(\)\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x+9=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-9\end{matrix}\right.\)
b) \(x^2-8x+3x-24=0\)
\(\Leftrightarrow\left(x-8\right)x+3\left(x-8\right)=0\)
\(\Leftrightarrow\left(x-8\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-8=0\\x+3=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-3\end{matrix}\right.\)
c) \(x^3-3x^2+3x-1=0\)
\(\Leftrightarrow\left(x-1\right)^3=0\)
\(\Leftrightarrow x-1=0\)
\(\Leftrightarrow x=1\)
Tìm x
Y) x^2-x-6=0
Z) 3x² –5x–8=0
J) 25x^2-4=0
R) 2(x+3)-x^2-3x=0
U. x³–3x² –x+3=0
Giúp mik vs mình cần gấp
y) \(x^2-x-6=0\\ \Leftrightarrow\left(x-3\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
Vậy \(x\in\left\{-2;3\right\}\) là nghiệm của pt.
z) \(3x^2-5x-8=0\\ \Leftrightarrow\left(3x-8\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{8}{3}\\x=-1\end{matrix}\right.\)
Vậy \(x\in\left\{\dfrac{8}{3};-1\right\}\) là nghiệm của pt.
j) \(25x^2-4=0\\ \Leftrightarrow\left(5x-2\right)\left(5x+2\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{2}{5}\\x=\dfrac{-2}{5}\end{matrix}\right.\)
Vậy \(x\in\left\{\dfrac{2}{5};\dfrac{-2}{5}\right\}\) là nghiệm của pt.
r) \(2\left(x+3\right)-x^2-3x=0\\ \Leftrightarrow2\left(x+3\right)-x\left(x+3\right)=0\\ \Leftrightarrow\left(2-x\right)\left(x+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)
Vậy \(x\in\left\{-3;2\right\}\) là nghiệm của pt.
u) \(x^3-3x^2-x+3=0\\ \Leftrightarrow x^2\left(x-3\right)-\left(x-3\right)=0\\ \Leftrightarrow\left(x-3\right)\left(x^2-1\right)=0\\ \Leftrightarrow\left(x-3\right)\left(x-1\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\\x=-1\end{matrix}\right.\)
Vậy \(x\in\left\{-1;1;3\right\}\) là nghiệm của pt.
Tìm x
Y) x^2-x-6=0
Z) 3x² –5x–8=0
J) 25x^2-4=0
R) 2(x+3)-x^2-3x=0
U. x³–3x² –x+3=0
Giúp mik vs mình cần gấp
y: Ta có: \(x^2-x-6=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
z: Ta có: \(3x^2-5x-8=0\)
\(\Leftrightarrow\left(3x-8\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{8}{3}\\x=-1\end{matrix}\right.\)
j: Ta có: \(25x^2-4=0\)
\(\Leftrightarrow\left(5x-2\right)\left(5x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{5}\\x=-\dfrac{2}{5}\end{matrix}\right.\)
r: Ta có: \(2\left(x+3\right)-x^2-3x=0\)
\(\Leftrightarrow\left(x+3\right)\left(2-x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\)
u: Ta có: \(x^3-3x^2-x+3=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\\x=-1\end{matrix}\right.\)
Tìm x biết:
a) |5-3x|-2|x+3|=0
b) |3x+2|+|1-3x|=0
Bài 1: tìm x
a, (3x-5)2 - (x-1)2 = 0
b, 16(2-3x) + x2(3x-2) =0
Bài 2:
a: \(x^2-4x+3=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
a, (3x-5)^2 - (x-1)^2 = 0
(3x-5-x+1)(3x-5+x-1) =0
(2x-4)(4x-6)=0
Do đó: 2x-4=0 hoặc 4x-6=0
Th1: 2x-4=0 => 2x=4
=> x=2
Th2: 4x-6=0 => 4x=6
=> x = 4/6 =2/3
Vậy x = 2 ; 2/3