Chứng minh:
\(\dfrac{x-x^2+1}{x-x^2-1}< 1\)
A=(\(\dfrac{2}{x+1}\)-\(\dfrac{1}{x-1}\)+\(\dfrac{5}{x^2-1}\)):\(\dfrac{2x-1}{x^2-1}\)
Chứng minh A=\(\dfrac{x+2}{2x-1}\)
\(A=\left(\dfrac{2}{x+1}-\dfrac{1}{x-1}+\dfrac{5}{x^2-1}\right):\dfrac{2x+1}{x^2-1}\\ =\left(\dfrac{2\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}-\dfrac{x+1}{\left(x+1\right)\left(x-1\right)}+\dfrac{5}{\left(x+1\right)\left(x-1\right)}\right).\dfrac{\left(x-1\right)\left(x+1\right)}{2x+1}\\ =\dfrac{2x-2-x-1+5}{\left(x+1\right)\left(x-1\right)}.\dfrac{\left(x-1\right)\left(x+1\right)}{2x+1}\\ =\dfrac{x+2}{2x+1}\)
A=(\(\dfrac{2}{x+1}\)-\(\dfrac{1}{x-1}\)+\(\dfrac{5}{x^2-1}\)):\(\dfrac{2x+1}{x-1}\)
Chứng minh A=\(\dfrac{x+2}{2x-1}\)
\(A=\left(\dfrac{2}{x+1}-\dfrac{1}{x-1}+\dfrac{5}{x^2-1}\right):\dfrac{2x+1}{x-1}\\ =\left(\dfrac{2\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}-\dfrac{x+1}{\left(x+1\right)\left(x-1\right)}+\dfrac{5}{\left(x+1\right)\left(x-1\right)}\right).\dfrac{x-1}{2x+1}\\ =\dfrac{2x-2-x-1+5}{\left(x+1\right)\left(x-1\right)}.\dfrac{x-1}{2x+1}\\ =\dfrac{x+2}{\left(x+1\right)\left(2x+1\right)}\)
Đề sai r bn
Chứng minh đẳng thức: \(\left[\dfrac{2}{3x}-\dfrac{2}{x+1}\left(\dfrac{x+1}{3x}-x-1\right)\right]:\dfrac{x-1}{x}=\dfrac{2}{x-1}\).
VT = `[ 2/(3x) -2/(x+1) (x+1)/(3x) -x-1)]: (x-1)/x`
`=[2/(3x)-2/(x+1) . ((x+1)-3x(x+1))/(3x) ] . x/(x-1)`
`= [2/(3x) + 2/(x+1) ((3x-1)(x+1))/(3x) ] . x/(x-1)`
`= [ 2/(3x) + (2(3x-1))/(3x) ] . x/(x-1)`
`= (6x)/(3x) . x/(x-1)`
`= 2 . x/(x-1)`
`= (2x)/(x-1)`
a, Cho x, y, z > 0 \(\in[0,1]\). Chứng minh:
\(\dfrac{x}{yz+1}+\dfrac{y}{xz+1}+\dfrac{z}{xy+1}< 2\)
b, x, y, z > 0 : xyz = 1. Chứng minh:
\(\dfrac{1}{x^2+2y+3}+\dfrac{1}{y^2+2z^2+3}+\dfrac{1}{z^2+2x^2+3}\le2\)
1. A= \(\left(\dfrac{\sqrt{x}}{\sqrt{x}+2}-\dfrac{4}{x+2\sqrt{x}}\right):\left(1+\dfrac{1}{\sqrt{x}}\right)=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\)
Chứng minh: A<1
\(A-1=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}-1=\dfrac{\sqrt{x}-2-\sqrt{x}-1}{\sqrt{x}+1}=\dfrac{-3}{\sqrt{x}+1}\)
Do \(\sqrt{x}\ge0\Rightarrow\sqrt{x}+1>0;\forall x\in D\)
\(\Rightarrow\dfrac{-3}{\sqrt{x}+1}< 0\)
\(\Rightarrow A-1< 0\Rightarrow A< 1\)
Chứng minh rằng:
\(\dfrac{2}{xy}:(\dfrac{1}{x}-\dfrac{1}{y})^2:\dfrac{x^2+y^2}{(x-y)^2}\)=1
Sửa đề: \(\dfrac{2}{xy}:\left(\dfrac{1}{x}-\dfrac{1}{y}\right)^2:\dfrac{x^2+y^2}{\left(x-y\right)^2}=\dfrac{2xy}{x^2+y^2}\)
Ta có: \(\dfrac{2}{xy}:\left(\dfrac{1}{x}-\dfrac{1}{y}\right)^2:\dfrac{x^2+y^2}{\left(x-y\right)^2}\)
\(=\dfrac{2}{xy}:\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{2}{xy}\right):\dfrac{x^2+y^2}{\left(x-y\right)^2}\)
\(=\dfrac{2}{xy}:\left(\dfrac{x^2+y^2}{x^2y^2}-\dfrac{2xy}{x^2y^2}\right):\dfrac{x^2+y^2}{\left(x-y\right)^2}\)
\(=\dfrac{2}{xy}:\dfrac{x^2-2xy+y^2}{\left(xy\right)^2}:\dfrac{x^2+y^2}{\left(x-y\right)^2}\)
\(=\dfrac{2}{xy}\cdot\dfrac{\left(xy\right)^2}{\left(x-y\right)^2}:\dfrac{x^2+y^2}{\left(x-y\right)^2}\)
\(=\dfrac{2xy}{\left(x-y\right)^2}:\dfrac{x^2+y^2}{\left(x-y\right)^2}\)
\(=\dfrac{2xy}{\left(x-y\right)^2}\cdot\dfrac{\left(x-y\right)^2}{x^2+y^2}\)
\(=\dfrac{2xy}{x^2+y^2}\)
Có thể đề bắt cm : VT \(\le1\)
áp dụng kq của bạn thịnh : VT = \(\dfrac{2xy}{x^2+y^2}\le\dfrac{2xy}{2xy}=1\) (x2 + y2 \(\ge\) 2xy)
Cho biểu thức : A = \(\dfrac{x^2+2}{x^2-1}+\dfrac{x+1}{x^2+x+1}+\dfrac{1}{1-x}\)với x ≠ 1
a) Chứng minh A = \(\dfrac{x+1}{x^2+x+1}\)
b) Tìm x để A = \(\dfrac{2}{7}\)
c) Tìm giá trị nhỏ nhất của A
a: \(A=\dfrac{x^2+2+x^2-1-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x^2-x}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x}{x^2+x+1}\)
P=\(\left(\dfrac{x+1}{x}-\dfrac{1}{1-x}+\dfrac{2-x^2}{x^2-x}\right):\dfrac{x}{x-1}\)
Tìm điều kiện của x và chứng minh P=\(\dfrac{x+1}{x^2}\)
Tính giá trị của P với x thỏa mãn /2x-1/=3
HELP
a: ĐKXĐ: x<>0; x<>1
\(P=\dfrac{x^2-1+x+2-x^2}{x\left(x-1\right)}\cdot\dfrac{x-1}{x}\)
\(=\dfrac{x+1}{x\cdot x}=\dfrac{x+1}{x^2}\)
b: |2x-1|=3
=>2x-1=3 hoặc 2x-1=-3
=>x=-1(nhận) hoặc x=2(nhận)
Khi x=-1 thì \(P=\dfrac{-1+1}{\left(-1\right)^2}=0\)
Khi x=2 thì \(P=\dfrac{2+1}{2^2}=\dfrac{3}{4}\)
P=\(\left(\dfrac{x+1}{x}-\dfrac{1}{1-x}+\dfrac{2-x^2}{x^2-x}\right):\dfrac{x}{x-1}\)
Tìm điều kiện của x và chứng minh P=\(\dfrac{x+1}{x^2}\)
Tính giá trị của P với x thỏa mãn /2x-1/=3
HELP
B=\(\dfrac{2\sqrt{x}-3}{\sqrt{x}-1}\)+\(\dfrac{3-\sqrt{x}}{x-1}\)
chứng minh B=\(\dfrac{2\sqrt{x}}{\sqrt{x}+1}\)
\(B=\dfrac{2\sqrt{x}-3}{\sqrt{x}-1}+\dfrac{3-\sqrt{x}}{x-1}\left(dkxd:x\ne1,x\ge0\right)\)
\(=\dfrac{2\sqrt{x}-3}{\sqrt{x}-1}+\dfrac{3-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\left(2\sqrt{x}-3\right)\left(\sqrt{x}+1\right)+3-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{2x+2\sqrt{x}-3\sqrt{x}-3+3-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{2x-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{2\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{2\sqrt{x}}{\sqrt{x}+1}\left(dpcm\right)\)
\(B=\dfrac{2x+2\sqrt{x}-3\sqrt{x}-3+3-\sqrt{x}}{x-1}=\dfrac{2x-2\sqrt{x}}{x-1}=\dfrac{2\sqrt{x}}{\sqrt{x}+1}\)
\(B=\dfrac{2\sqrt{x}-3}{\sqrt{x}-1}+\dfrac{3-\sqrt{x}}{x-1}\) ĐK: \(x\ge0;x\ne1\)
\(=\dfrac{\left(2\sqrt{x}-3\right)\left(\sqrt{x}+1\right)+3-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{2x+2\sqrt{x}-3\sqrt{x}-3+3-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{2x-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{2\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{2\sqrt{x}}{\sqrt{x}+1}\) (Đpcm).