Ôn tập: Phân thức đại số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ngọc

Chứng minh rằng:

\(\dfrac{2}{xy}:(\dfrac{1}{x}-\dfrac{1}{y})^2:\dfrac{x^2+y^2}{(x-y)^2}\)=1

Nguyễn Lê Phước Thịnh
19 tháng 12 2020 lúc 22:12

Sửa đề: \(\dfrac{2}{xy}:\left(\dfrac{1}{x}-\dfrac{1}{y}\right)^2:\dfrac{x^2+y^2}{\left(x-y\right)^2}=\dfrac{2xy}{x^2+y^2}\)

Ta có: \(\dfrac{2}{xy}:\left(\dfrac{1}{x}-\dfrac{1}{y}\right)^2:\dfrac{x^2+y^2}{\left(x-y\right)^2}\)

\(=\dfrac{2}{xy}:\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{2}{xy}\right):\dfrac{x^2+y^2}{\left(x-y\right)^2}\)

\(=\dfrac{2}{xy}:\left(\dfrac{x^2+y^2}{x^2y^2}-\dfrac{2xy}{x^2y^2}\right):\dfrac{x^2+y^2}{\left(x-y\right)^2}\)

\(=\dfrac{2}{xy}:\dfrac{x^2-2xy+y^2}{\left(xy\right)^2}:\dfrac{x^2+y^2}{\left(x-y\right)^2}\)

\(=\dfrac{2}{xy}\cdot\dfrac{\left(xy\right)^2}{\left(x-y\right)^2}:\dfrac{x^2+y^2}{\left(x-y\right)^2}\)

\(=\dfrac{2xy}{\left(x-y\right)^2}:\dfrac{x^2+y^2}{\left(x-y\right)^2}\)

\(=\dfrac{2xy}{\left(x-y\right)^2}\cdot\dfrac{\left(x-y\right)^2}{x^2+y^2}\)

\(=\dfrac{2xy}{x^2+y^2}\)

santa
20 tháng 12 2020 lúc 22:47

Có thể đề bắt cm : VT \(\le1\)

áp dụng kq của bạn thịnh : VT = \(\dfrac{2xy}{x^2+y^2}\le\dfrac{2xy}{2xy}=1\)   (x2 + y2 \(\ge\) 2xy)


Các câu hỏi tương tự
Haruno Sakura
Xem chi tiết
Trung Dũng
Xem chi tiết
___Vương Tuấn Khải___
Xem chi tiết
Quỳnh Như
Xem chi tiết
Nga Phạm
Xem chi tiết
Quỳnh Như
Xem chi tiết
Vũ Thị Thu Hằng
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Quỳnh Như
Xem chi tiết