Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Thị Thu Huyền
Xem chi tiết
Eren
25 tháng 12 2018 lúc 21:23

Vì 3 ≤ x ≤ 7 => x - 3 ≥ 0; 7 - x ≥ 0

=> C ≥ 0

Dấu = xảy ra khi và chỉ khi x = 3 hoặc x = 7

C = (x - 3)(7 - x) ≤ \(\dfrac{1}{4}\)(x - 3 + 7 - x)2 = \(\dfrac{1}{4}\).42 = 4

Dấu "=" xảy ra <=> x - 3 = 7 - x <=> x = 5

Eren
25 tháng 12 2018 lúc 22:11

\(G=\left(x^2+\sqrt[3]{3}\right)+\left(\dfrac{2}{x^3}+\dfrac{2}{\sqrt{3}}+\dfrac{2}{\sqrt{3}}\right)-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}\ge2\sqrt{x^2.\sqrt[3]{3}}+3\sqrt[3]{\dfrac{2}{x^3}.\dfrac{2}{\sqrt{3}}.\dfrac{2}{\sqrt{3}}}-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}=2\sqrt[6]{3}.x+\dfrac{6}{\sqrt[3]{3}x}-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}\ge2\sqrt{2\sqrt[6]{3}.x.\dfrac{6}{\sqrt[3]{3}x}}-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}=2\sqrt{\dfrac{12\sqrt[6]{3}}{\sqrt[3]{3}}}-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}\)

Dấu "=" xảy ra khi và chỉ khi \(x=\sqrt[6]{3}\)

Eren
26 tháng 12 2018 lúc 20:49

Cô - si cho 5 số lên mạng search cách chứng minh nhé

\(G=\dfrac{1}{3}x^2+\dfrac{1}{3}x^2+\dfrac{1}{3}x^2+\dfrac{1}{x^3}+\dfrac{1}{x^3}\ge5\sqrt[5]{\dfrac{1}{3^3}.\dfrac{x^2.x^2.x^2}{x^3.x^3}}=5\sqrt[5]{\dfrac{1}{27}}\)

Dấu "=" xảy ra <=> \(\dfrac{1}{3}x^2=x^3\)

<=> \(x^5=3\)

<=> \(x=\sqrt[5]{3}\)

Duong Thi Nhuong
Xem chi tiết
T.Thùy Ninh
9 tháng 9 2017 lúc 16:10

\(b,Q=-5x^2-4x+1\)

\(=-5\left(x^2+\dfrac{4}{5}x+\dfrac{4}{25}\right)+\dfrac{9}{5}\)

\(=-5\left(x+\dfrac{2}{5}\right)^2+\dfrac{9}{5}\)

Với mọi giá trị của x ta có:

\(-5\left(x+\dfrac{2}{5}\right)^2\le0\)

\(\Rightarrow-5\left(x+\dfrac{2}{5}\right)^2+\dfrac{9}{5}\le\dfrac{9}{5}\)

Vậy MaxQ = \(\dfrac{9}{5}\)

Để Q = \(\dfrac{9}{5}\) thì \(x+\dfrac{2}{5}=0\Rightarrow x=-\dfrac{2}{5}\)

\(c,K=x\left(x-3\right)\left(x-4\right)\left(x-7\right)\)

\(=x\left(x-7\right)\left(x-3\right)\left(x-4\right)\)

\(=\left(x^2-7x\right)\left(x^2-7x+12\right)\)

Đặt \(x^2-7x+6=t\) , ta có:

\(K=\left(t-6\right)\left(t+6\right)\)

\(=t^2-36\)

\(=\left(x^2-7x+6\right)^2-36\)

Với mọi giá trị của x ta có:

\(\left(x^2-7x+6\right)^2\ge0\Rightarrow\left(x^2-7x+6\right)^2-36\ge-36\)

Vậy Min K = -36

Để K = - 36 thì \(x^2-7x+6=0\)

\(\Leftrightarrow x^2-x-6x+6=0\)

\(\Leftrightarrow x\left(x-1\right)-6\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-6\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=6\\x=1\end{matrix}\right.\)

Nguyễn Thị Hồng Nhung
9 tháng 9 2017 lúc 13:14

a)\(P=2x^2-8x+1\)

=\(2\left(x^2-4x+4\right)-7\)

=\(2\left(x-2\right)^2-7\)

Với mọi x thì \(2\left(x-2\right)^2>=0\)

=>\(2\left(x-2\right)^2-7>=-7\)

Hay \(P>=-7\) với mọi x

Để \(P=-7\) thì

\(\left(x-2\right)^2=0\)

=>\(x-2=0\)

=>\(x=2\)

Vậy...

Các câu sau tương tự

Nue nguyen
Xem chi tiết
Nue nguyen
Xem chi tiết
Nga Hang Nguyen
Xem chi tiết
Nguyễn Quỳnh Trang
5 tháng 11 2017 lúc 20:23

2.

a) Vì \(\left|2x+1\right|\ge0\forall x\in R\\ \Rightarrow3\left|2x+1\right|\ge0\forall x\in R\\ \Rightarrow3\left|2x+1\right|-4\ge-4\forall x\in R\\ \Rightarrow A\ge-4\forall x\in R\)

Vậy GTNN của A là -4 đạt được khi \(x=-\dfrac{1}{2}\)

Nga Hang Nguyen
5 tháng 11 2017 lúc 18:40

Mai mk phải nộp rồi ! Các bn ơi giúp mk với! Help Me ! Thank you !

Nguyễn Quỳnh Trang
5 tháng 11 2017 lúc 20:17

1. Áp dụng t/c dãy tỉ số bằng nhau, ta có:

\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}\)

Vậy\(\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}\) (đpcm)

Pikachu
Xem chi tiết
ngonhuminh
15 tháng 4 2018 lúc 20:40

a)

\(A=\dfrac{2x^2-16x+41}{x^2-8x+22}=\dfrac{2\left(x^2-8x+22\right)-3}{x^2-8x+22}\)

\(A-2=-\dfrac{3}{x^2-8x+22}=-\dfrac{3}{\left(x-4\right)^2+6}\ge-\dfrac{3}{6}=-\dfrac{1}{2}\)

\(A\ge\dfrac{3}{2}\) khi x =4

Nguyễn Quang Thái
Xem chi tiết
Phương Dư Khả
Xem chi tiết
ha:rt the hanoi
Xem chi tiết
Ngô Thành Chung
12 tháng 9 2021 lúc 22:47

1, \(y=2-sin\left(\dfrac{3x}{2}+x\right).cos\left(x+\dfrac{\pi}{2}\right)\)

 \(y=2-\left(-cosx\right).\left(-sinx\right)\)

y = 2 - sinx.cosx

y = \(2-\dfrac{1}{2}sin2x\)

Max = 2 + \(\dfrac{1}{2}\) = 2,5

Min = \(2-\dfrac{1}{2}\) = 1,5

2, y = \(\sqrt{5-\dfrac{1}{2}sin^22x}\)

Min = \(\sqrt{5-\dfrac{1}{2}}=\dfrac{3\sqrt{2}}{2}\)

Max = \(\sqrt{5}\)