Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vũ Ngọc Thảo Nguyên
Xem chi tiết
Đoàn Nguyễn Bảo Ngọc
Xem chi tiết
Trần Bảo Như
26 tháng 7 2018 lúc 9:00

1, \(3x^2-5x+4\)

\(=3\left(x^2-\frac{5}{3}x\right)+1=3\left(x^2-2.\frac{5}{6}x+\frac{25}{36}\right)+\frac{23}{12}=3\left(x-\frac{5}{6}\right)^2+\frac{23}{12}\)

Ta có: \(3\left(x-\frac{5}{6}\right)^2\ge0\forall x\Leftrightarrow3\left(x-\frac{5}{6}\right)^2+\frac{23}{12}\ge\frac{23}{12}\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x-\frac{5}{6}\right)^2=0\Leftrightarrow x-\frac{5}{6}=0\Leftrightarrow x=\frac{5}{6}\)

Vậy minA = \(\frac{23}{12}\Leftrightarrow x=\frac{5}{6}\)

2, Bạn thử kiểm tra lại đề bài xem

dũng lê
Xem chi tiết
Lê Ng Hải Anh
26 tháng 7 2018 lúc 8:38

\(A=-2x^2+5x-8=-2\left(x^2-\frac{5}{2}x+4\right)\)

\(=-2\left(x^2-\frac{5}{2}x+\frac{25}{16}+\frac{39}{16}\right)=-2\left(x-\frac{5}{2}\right)^2-\frac{39}{8}\)

Vì: \(-2\left(x-\frac{5}{2}\right)^2-\frac{39}{8}\le\frac{39}{8}\forall x\)

GTLN  của bt là 39/8 tại \(-2\left(x-\frac{5}{2}\right)^2=0\Rightarrow x=\frac{5}{2}\)

cn lại lm tg tự  nha bn

Nguyễn Quang Sáng
Xem chi tiết
Nguyễn Đức Trí
17 tháng 9 2023 lúc 21:24

\(A=15-4x^2+5x\)

\(\Rightarrow A=-4x^2+5x+15\)

\(\Rightarrow A=-4\left(x^2+\dfrac{5}{4}x+\dfrac{25}{64}\right)+\dfrac{25}{16}+15\)

\(\Rightarrow A=-4\left(x+\dfrac{5}{8}\right)^2+\dfrac{265}{16}\)

mà \(-4\left(x+\dfrac{5}{8}\right)^2\le0,\forall x\in R\)

\(\Rightarrow A=-4\left(x+\dfrac{5}{8}\right)^2+\dfrac{265}{16}\le\dfrac{265}{16}\)

\(\Rightarrow GTLN\left(A\right)=\dfrac{265}{16}\left(tại.x=-\dfrac{5}{8}\right)\)

Nguyễn Ngọc Quỳnh Phương
Xem chi tiết
Lê Tài Bảo Châu
25 tháng 9 2019 lúc 21:20

\(A=-5x^2-4x+1\)

\(=-5\left(x^2+\frac{4}{5}x-\frac{1}{5}\right)\)

\(=-5\left(x^2+2.x.\frac{2}{5}+\frac{4}{25}-\frac{4}{25}-\frac{1}{5}\right)\)

\(=-5\left[\left(x+\frac{2}{5}\right)^2-\frac{1}{25}\right]\)

\(=-5\left(x+\frac{2}{5}\right)^2+\frac{1}{5}\)

Vì \(-5\left(x+\frac{2}{5}\right)^2\le0;\forall x\)

\(\Rightarrow-5\left(x+\frac{2}{5}\right)^2+\frac{1}{5}\le0+\frac{1}{5};\forall x\)

Hay \(A\le\frac{1}{5};\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x+\frac{2}{5}\right)^2=0\)

                        \(\Leftrightarrow x=\frac{-2}{5}\)

Vậy \(A_{max}=\frac{1}{5}\Leftrightarrow x=\frac{-2}{5}\)

Quỳnh Anh Nguyễn Thị
Xem chi tiết
Dương Tử Thiên
Xem chi tiết
Nguyễn Ngọc Thảo Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 1 2022 lúc 15:01

b: \(x^2-x+1=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)

c: \(A=x^2-6x+9+2=\left(x-3\right)^2+2\ge2\forall x\)

Dấu '=' xảy ra khi x=3

d: \(B=-\left(x^2-4x+5\right)=-\left(x^2-4x+4+1\right)=-\left(x-2\right)^2-1\le-1\forall x\)

Dấu '=' xảy ra khi x=2

trung
Xem chi tiết
Trúc Giang
23 tháng 6 2021 lúc 19:40

a)

\(A=4x-x^2+3=-\left(x^2-4x-3\right)=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)

Daaus = xayr ra khi: x = 2

b) \(B=4x^2-12x+15=4\left(x^2-3x+9\right)-21=4\left(x-3\right)^2-21\ge-21\)

Dấu = xảy ra khi x = 3

c) \(C=4x^2+2y^2-4xy-4y+1=\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3=\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)

Dấu = xảy ra khi

2x = y và y = 2

=> x = 1 và y = 2

๖ۣۜDũ๖ۣۜN๖ۣۜG
23 tháng 6 2021 lúc 19:41

a) A = \(-x^2+4x+3=-\left(x-2\right)^2+7\le7\)

Dấu "=" <=> x = 2

b) \(4x^2-12x+15=\left(2x-3\right)^2+6\ge6\)

Dấu "=" xảy ra <=> \(x=\dfrac{3}{2}\)

c) \(4x^2+2y^2-4xy-4y+1\)

\(\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3\)

\(\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)

Dấu "=" <=> \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

Đoàn Phong
Xem chi tiết
Võ Đông Anh Tuấn
25 tháng 7 2016 lúc 17:18

a) A= x+ 4x + 5

=x2+4x+4+1

=(x+2)2+10+1=1

Dấu = khi x+2=0 <=>x=-2

Vậy Amin=1 khi x=-2

b) B= ( x+3 ) ( x-11 ) + 2016

=x2-8x-33+2016

=x2-8x+16+1967

=(x-4)2+19670+1967=1967

Dấu = khi x-4=0 <=>x=4

Vậy Bmin=1967 <=>x=4

Bài 2:

a) D= 5 - 8x - x

=-(x2+8x-5)

=21-x2+8x+16

=21-x2+4x+4x+16

=21-x(x+4)+4(x+4)

=21-(x+4)(x+4)

=21-(x+4)20+21=21

Dấu = khi x+4=0 <=>x=-4

Như Ý Nguyễn Lê
10 tháng 10 2017 lúc 16:01

Bài 1:

c)C=x2+5x+8

=x2+5x+\(\left(\dfrac{5}{2}\right)^2\)+\(\dfrac{7}{4}\)

=\(\left(x+\dfrac{5}{2}\right)^2\)+\(\dfrac{7}{4}\)\(\ge\dfrac{7}{4}\)

Vậy \(C_{min}=\dfrac{7}{4}\Leftrightarrow x=-\dfrac{5}{2}\)