Chứng minh: \(\sqrt{2019^2+2019^2.2010^2+2010^2}\in N.\)
Chứng minh: \(\sqrt{2019^2+2019^2.2020^2+2020^2}\in N\)
\(\sqrt{2019^2+2019^2.2020^2+2020^2}=\sqrt{2019^2+\left(2020-1\right)^2.2020^2+2020^2}=\sqrt{2019^2+2020^4-2.2020.2020^2+2020^2+2020^2}=\sqrt{2020^4+2.2020^2-2.\left(2019+1\right).2020^2+2019^2}=\sqrt{2020^4+2.2020^2-2.2019.2020^2-2.2020^2+2019^2}=\sqrt{2020^4-2.2019.2020^2+2019^2}=\sqrt{\left(2020^2-2019\right)^2}=\left|2020^2-2019\right|=2020^2-2019\)
Vì 20202-2019\(\in N\)
Vậy \(\sqrt{2019^2+2019^2.2020^2+2020^2}\)\(\in N\)
Chứng minh:
\(\sqrt{2019^2+2019^2.2020^2+2020^2}\in N\)
Hướng dẫn:
Dat: \(2019=a\)
Ta có: \(a^2+a^2\left(a+1\right)^2+\left(a+1\right)^2\)
\(=a^2\left(a^2+2a+1+1\right)+\left(a+1\right)^2\)
\(=a^2\left(a^2+2a+2\right)+\left(a+1\right)^2\)
\(=a^4+2a^2\left(a+1\right)+\left(a+1\right)^2\)
\(=\left(a^2+a+1\right)^2\)
Chứng minh rằng:
\(\sqrt{2009^2+2009^2.2010^2+2010^2}\) là 1 số nguyên dương
Lời giải:
Đặt $a=2009$
\(\sqrt{2009^2+2009^2.2010^2+2010^2}=\sqrt{a^2+a^2(a+1)^2+(a+1)^2}\)
\(=\sqrt{a^2+a^2(a^2+2a+1)+(a+1)^2}\)
\(=\sqrt{a^2+a^4+2a^3+a^2+(a+1)^2}=\sqrt{a^4+2a^2(a+1)+(a+1)^2}\)
\(=\sqrt{(a^2+a+1)^2}=a^2+a+1=2009^2+2009+1\) là 1 số nguyên dương
Ta có đpcm.
\(S_k=\left(\sqrt{2}+1\right)^k+\left(\sqrt{2}-1\right)^k\), k thuộc N
Chứng minh \(S_{2019}.S_{2010}-S_{4019}=2\sqrt{2}\)
Đề là \(S_{2009}.S_{2010}\) chứ
Đặt \(\sqrt{2}+1=a;\sqrt{2}-1=b\Rightarrow ab=1\)
Ta có: \(S_{2009}.S_{2010}=\left(a^{2009}+b^{2009}\right)\left(a^{2010}+b^{2010}\right)\)
\(=a^{2009}.a^{2010}+b^{2009}.a^{2010}+a^{2009}.b^{2010}+b^{2009}.b^{2010}\)
\(=a^{2009}.b^{2009}\left(a+b\right)+a^{4019}+b^{4019}\)
\(=1.2\sqrt{2}+S_{4019}=S_{4019}+2\sqrt{2}\)
\(\Rightarrow S_{2009}.S_{2010}-S_{4019}=2\sqrt{2}\)
Chứng minh rằng : \(2019/ \sqrt[2]{2018} + 2018/\sqrt[2]{2019} > \sqrt[2]{2018} + \sqrt[2]{2019}\)
\(\frac{2019}{\sqrt{2018}}+\frac{2018}{\sqrt{2019}}\ge\frac{\left(\sqrt{2019}+\sqrt{2018}\right)^2}{\sqrt{2018}+\sqrt{2019}}=\sqrt{2018}+\sqrt{2019}\)
Dấu "=" ko xảy ra nên \(\frac{2019}{\sqrt{2018}}+\frac{2018}{\sqrt{2019}}>\sqrt{2018}+\sqrt{2019}\)
a)Cho A= \(\dfrac{2015}{2016}+\dfrac{2016}{2017}+\dfrac{2017}{2018}+\dfrac{2018}{2019}+\dfrac{2019}{2020}+\dfrac{2021}{2015}\)
Chứng minh A>6
b)Cho C=\(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+....+\dfrac{1}{3^{2010}}\)
Chứng minh rằng C<1
Cho D=\(\dfrac{1}{1^2.2^3}+\dfrac{5}{2^2.3^3}+\dfrac{7}{3^2.4^2}+.....+\dfrac{4019}{2009^2.2010^2}\)
Chứng minh rằng D<1
mấy bạn giúp mình nha. Mình cần gấp lắm TT^TT
mấy bạn ơi câu b) là chứng minh C<\(\dfrac{1}{2}\)nha
chứng minh rằng:'
\(\frac{1}{\sqrt{2}}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{2010\sqrt{2019}}< \frac{88}{45}\)
Đề sai r bạn phải là \(2020\sqrt{2019}\)
chứng minh M=\(\frac{1}{1\sqrt{1}}+\frac{1}{2\sqrt{2}}+\frac{1}{3\sqrt{3}}+...+\frac{1}{2019\sqrt{2019}}< 2\sqrt{2}\)
giúp với
M<1/1.2+1/2.3+...+1/2019.2020=1-1/2020<1<2\(\sqrt{2}\)
chứng minh rằng biểu thức \(B=\sqrt{1+2018^2+\frac{2018^2}{2019^2}}+\frac{2018}{2019}\) có giá trị là 1 số tự nhiên
\(B=\sqrt{\frac{2019^2}{2019^2}+2018^2+\frac{2018^2}{2019^2}}+\frac{2018}{2019}\)
\(B=\sqrt{\frac{\left(2018+1\right)^2}{2019^2}+\frac{2018^2}{2019^2}+2018^2}+\frac{2018}{2019}\)
\(B=\sqrt{\frac{1}{2019^2}+\frac{2018^2+2.2018+2018^2}{2019^2}+2018^2}+\frac{2018}{2019}\)
\(B=\sqrt{\frac{1}{2019^2}+2.2018.\frac{1}{2019}+2018^2}+\frac{2018}{2019}\)
\(B=\sqrt{\left(\frac{1}{2019}+2018\right)^2}+\frac{2018}{2019}\)
\(B=\frac{1}{2019}+2018+\frac{2018}{2019}=2019\) là một số tự nhiên
\(B=\sqrt{1+2018^2+\frac{2018^2}{2019^2}}+\frac{2018}{2019}\)
\(B=\sqrt{1^2+2018^2+\left(-\frac{2018}{2019}\right)^2}+\frac{2018}{2019}\)
\(B=\sqrt{\left(1+2018-\frac{2018}{2019}\right)^2+2.\frac{2018}{2019}+2.\frac{2018^2}{2019}-2.2018}\)\(+\frac{2018}{2019}\)
\(B=\sqrt{\left(1+2018-\frac{2018}{2019}\right)^2+2\left(\frac{2018+2018.2018-2018.2019}{2019}\right)}\)\(+\frac{2018}{2019}\)
\(B=\sqrt{\left(1+2018-\frac{2018}{2019}\right)^2}+\frac{2018}{2019}\)
\(B=1+2018-\frac{2018}{2019}+\frac{2018}{2019}=2019\)
Vậy B có giá trị là 1 số tự nhiên.