Ôn tập cuối năm phần số học

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
bảo nam trần

chứng minh rằng biểu thức \(B=\sqrt{1+2018^2+\frac{2018^2}{2019^2}}+\frac{2018}{2019}\) có giá trị là 1 số tự nhiên

Nguyễn Linh Chi
4 tháng 6 2019 lúc 17:23

\(B=\sqrt{\frac{2019^2}{2019^2}+2018^2+\frac{2018^2}{2019^2}}+\frac{2018}{2019}\)

\(B=\sqrt{\frac{\left(2018+1\right)^2}{2019^2}+\frac{2018^2}{2019^2}+2018^2}+\frac{2018}{2019}\)

\(B=\sqrt{\frac{1}{2019^2}+\frac{2018^2+2.2018+2018^2}{2019^2}+2018^2}+\frac{2018}{2019}\)

\(B=\sqrt{\frac{1}{2019^2}+2.2018.\frac{1}{2019}+2018^2}+\frac{2018}{2019}\)

\(B=\sqrt{\left(\frac{1}{2019}+2018\right)^2}+\frac{2018}{2019}\)

\(B=\frac{1}{2019}+2018+\frac{2018}{2019}=2019\) là một số tự nhiên

Nguyễn Thị Ngọc Thơ
4 tháng 6 2019 lúc 17:18

\(B=\sqrt{1+2018^2+\frac{2018^2}{2019^2}}+\frac{2018}{2019}\)

\(B=\sqrt{1^2+2018^2+\left(-\frac{2018}{2019}\right)^2}+\frac{2018}{2019}\)

\(B=\sqrt{\left(1+2018-\frac{2018}{2019}\right)^2+2.\frac{2018}{2019}+2.\frac{2018^2}{2019}-2.2018}\)\(+\frac{2018}{2019}\)

\(B=\sqrt{\left(1+2018-\frac{2018}{2019}\right)^2+2\left(\frac{2018+2018.2018-2018.2019}{2019}\right)}\)\(+\frac{2018}{2019}\)

\(B=\sqrt{\left(1+2018-\frac{2018}{2019}\right)^2}+\frac{2018}{2019}\)

\(B=1+2018-\frac{2018}{2019}+\frac{2018}{2019}=2019\)

Vậy B có giá trị là 1 số tự nhiên.

bảo nam trần
4 tháng 6 2019 lúc 17:01
bảo nam trần
4 tháng 6 2019 lúc 17:05

Các câu hỏi tương tự
Hue Tran
Xem chi tiết
Yang Yang
Xem chi tiết
Lông_Xg
Xem chi tiết
Phạm Thị Cẩm Huyền
Xem chi tiết
Dương Thị Thanh Hương
Xem chi tiết
Nguyễn Thu Hằng
Xem chi tiết
Hồ Quang Phước
Xem chi tiết
Kii
Xem chi tiết
dfgtrdtrdt
Xem chi tiết