Lời giải:
Đặt $a=2009$
\(\sqrt{2009^2+2009^2.2010^2+2010^2}=\sqrt{a^2+a^2(a+1)^2+(a+1)^2}\)
\(=\sqrt{a^2+a^2(a^2+2a+1)+(a+1)^2}\)
\(=\sqrt{a^2+a^4+2a^3+a^2+(a+1)^2}=\sqrt{a^4+2a^2(a+1)+(a+1)^2}\)
\(=\sqrt{(a^2+a+1)^2}=a^2+a+1=2009^2+2009+1\) là 1 số nguyên dương
Ta có đpcm.