Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Karry Angel

Giải phương trình:\(\dfrac{\sqrt{x-2009}-1}{x-2009}+\dfrac{\sqrt{y-2010}-1}{y-2010}+\dfrac{\sqrt{z-2011}-1}{z-2011}=\dfrac{3}{4}\)

Trương  Bảo Ngân
1 tháng 5 2018 lúc 9:14

Đặt a = \(\sqrt{x-2009}\)

b = \(\sqrt{y-2010}\)

c = \(\sqrt{z-2011}\)

\(\Leftrightarrow\dfrac{a-1}{a^2}+\dfrac{b-1}{b^2}+\dfrac{c-1}{c^2}=\dfrac{3}{4}\)

\(\Leftrightarrow\dfrac{1}{a}-\dfrac{1}{a^2}+\dfrac{1}{b}-\dfrac{1}{b^2}+\dfrac{1}{c}-\dfrac{1}{c^2}=\dfrac{3}{4}\)

\(\Leftrightarrow\dfrac{1}{a}-\dfrac{1}{a^2}-\dfrac{1}{4}+\dfrac{1}{b}-\dfrac{1}{b^2}-\dfrac{1}{4}+\dfrac{1}{c}-\dfrac{1}{c^2}-\dfrac{1}{4}=0\)

\(\Leftrightarrow-(\dfrac{1}{a}-\dfrac{1}{2})^2-\left(\dfrac{1}{b}-\dfrac{1}{2}\right)^2-\left(\dfrac{1}{c}-\dfrac{1}{2}\right)^2=0\)

Dấu = xảy ra khi
a = 2

b = 2

c = 2

\(\Leftrightarrow\sqrt{x-2009}=2\)

\(\sqrt{y-2010}=2\)

\(\sqrt{z-2011}=2\)

\(\Leftrightarrow x-2009=4\)

\(y-2010=4\)

\(z-2011=4\)

=> x = 2013

y = 2014

z = 2015


Các câu hỏi tương tự
Tường Nguyễn Thế
Xem chi tiết
Ánh Nguyễn
Xem chi tiết
Diệp Kì Thiên
Xem chi tiết
Trịnh Hương Giang
Xem chi tiết
Hồng Nguyễn Thị Bích
Xem chi tiết
trần minh trang
Xem chi tiết
Bùi Đức Anh
Xem chi tiết
Hồ Quế Ngân
Xem chi tiết
Tường Nguyễn Thế
Xem chi tiết