Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Minh Nhật
Xem chi tiết
Cô bé hạnh phúc
Xem chi tiết
Nguyễn Ngọc Minh
Xem chi tiết
_ɦყυ_
26 tháng 12 2018 lúc 11:37

cậu thử biến đổi tương xem thế nào....

_ɦყυ_
26 tháng 12 2018 lúc 11:37

khó thế

Phùng Minh Quân
24 tháng 6 2019 lúc 20:53

\(a+b+c=\frac{1}{abc}\)\(\Leftrightarrow\)\(abc^2=1-abc\left(a+b\right)\)

\(\Leftrightarrow\)\(a^2b^2c^4=1-2abc\left(a+b\right)+a^2b^2c^2\left(a+b\right)^2\)

\(VT=\frac{\left(1+b^2c^2\right)\left(1+a^2c^2\right)}{c^2+a^2b^2c^2}=\frac{1+a^2c^2+b^2c^2+a^2b^2c^4}{c^2+a^2b^2c^2}\)

\(=\frac{1+c^2\left(a^2+b^2\right)+1-2abc\left(a+b\right)+a^2b^2c^2\left(a+b\right)^2}{c^2+a^2b^2c^2}\)

\(=\frac{2+c^2\left(a+b\right)^2-2abc^2-2abc\left(a+b\right)+a^2b^2c^2\left(a+b\right)^2}{c^2+a^2b^2c^2}\)

\(=\frac{2-2abc\left(a+b+c\right)}{c^2+a^2b^2c^2}+\frac{\left(a+b\right)^2\left(c^2+a^2b^2c^2\right)}{c^2+a^2b^2c^2}\)

\(=\frac{2-2abc.\frac{1}{abc}}{c^2+a^2b^2c^2}+\left(a+b\right)^2=\left(a+b\right)^2=VP\) ( đpcm ) 

PS : sorry for late :'< 

Nguyen Thi Mai
Xem chi tiết
Nguyễn Việt Lâm
25 tháng 10 2021 lúc 10:38

a. Đề bài em ghi sai thì phải

Vì:

\(x+y=2\left(\sqrt{x-3}+\sqrt{y-3}\right)\)

\(\Leftrightarrow\left(x-3-2\sqrt{x-3}+1\right)+\left(y-3-2\sqrt{y-3}+1\right)+4=0\)

\(\Leftrightarrow\left(\sqrt{x-3}-1\right)^2+\left(\sqrt{y-3}-1\right)^2+4=0\) (vô lý)

Nguyễn Việt Lâm
25 tháng 10 2021 lúc 10:43

b.

Xét hàm \(f\left(x\right)=x^3+ax^2+bx+c\)

Hàm đã cho là hàm đa thức nên liên tục trên mọi khoảng trên R

Hàm bậc 3 nên có tối đa 3 nghiệm

\(f\left(-2\right)=-8+4a-2b+c>0\)

\(f\left(2\right)=8+4a+2b+c< 0\)

\(\Rightarrow f\left(-2\right).f\left(2\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc (-2;2)

\(\lim\limits_{x\rightarrow+\infty}f\left(x\right)=x^3\left(1+\dfrac{a}{x}+\dfrac{b}{x^2}+\dfrac{c}{x^3}\right)=+\infty.\left(1+0+0+0\right)=+\infty\)

\(\Rightarrow\) Luôn tồn tại 1 số thực dương n đủ lớn sao cho \(f\left(n\right)>0\)

\(\Rightarrow f\left(2\right).f\left(n\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(2;n\right)\) hay \(\left(2;+\infty\right)\)

Tương tự \(\lim\limits_{x\rightarrow-\infty}f\left(x\right)=-\infty\Rightarrow f\left(-2\right).f\left(m\right)< 0\Rightarrow f\left(x\right)\) luôn  có ít nhất 1 nghiệm thuộc \(\left(-\infty;-2\right)\)

\(\Rightarrow f\left(x\right)\) có đúng 3 nghiệm pb \(\Rightarrow\) hàm cắt Ox tại 3 điểm pb

BHQV
Xem chi tiết
Akai Haruma
12 tháng 2 2023 lúc 19:12

Lời giải:
a. 

$f(-1)=a-b+c$

$f(-4)=16a-4b+c$

$\Rightarrow f(-4)-6f(-1)=16a-4b+c-6(a-b+c)=10a+2b-5c=0$

$\Rightarrow f(-4)=6f(-1)$

$\Rightarrow f(-1)f(-4)=f(-1).6f(-1)=6[f(-1)]^2\geq 0$ (đpcm)

b.

$f(-2)=4a-2b+c$

$f(3)=9a+3b+c$

$\Rightarrow f(-2)+f(3)=13a+b+2c=0$

$\Rightarrow f(-2)=-f(3)$

$\Rightarrow f(-2)f(3)=-[f(3)]^2\leq 0$ (đpcm)

Trần Đức Vinh
2 tháng 3 2023 lúc 22:38

a. 


(

1
)
=



+

f(−1)=a−b+c


(

4
)
=
16


4

+

f(−4)=16a−4b+c



(

4
)

6

(

1
)
=
16


4

+


6
(



+

)
=
10

+
2


5

=
0
⇒f(−4)−6f(−1)=16a−4b+c−6(a−b+c)=10a+2b−5c=0



(

4
)
=
6

(

1
)
⇒f(−4)=6f(−1)



(

1
)

(

4
)
=

(

1
)
.
6

(

1
)
=
6
[

(

1
)
]
2

0
⇒f(−1)f(−4)=f(−1).6f(−1)=6[f(−1)] 
2
 ≥0 (đpcm)

b.


(

2
)
=
4


2

+

f(−2)=4a−2b+c


(
3
)
=
9

+
3

+

f(3)=9a+3b+c



(

2
)
+

(
3
)
=
13

+

+
2

=
0
⇒f(−2)+f(3)=13a+b+2c=0



(

2
)
=


(
3
)
⇒f(−2)=−f(3)



(

2
)

(
3
)
=

[

(
3
)
]
2

0
⇒f(−2)f(3)=−[f(3)] 
2
 ≤0 (đpcm

Hoàng Giang
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 12 2023 lúc 12:26

a: \(\left|a-2b+3\right|^{2023}>=0\forall a,b\)

\(\left(b-1\right)^{2024}>=0\forall b\)

Do đó: \(\left|a-2b+3\right|^{2023}+\left(b-1\right)^{2024}>=0\forall a,b\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}a-2b+3=0\\b-1=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}b=1\\a=2b-3=2\cdot1-3=-1\end{matrix}\right.\)

Thay a=-1 và b=1 vào P, ta được:

\(P=\left(-1\right)^{2023}\cdot1^{2024}+2024=2024-1=2023\)

btkho
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 1 2021 lúc 0:05

\(\Leftrightarrow1+b^2+a^2\left(b^3+b\right)\le\left(2b^3+2\right)a^2-2\left(b^3+1\right)a+2b^3+2\)

\(\Leftrightarrow\left(b^3-b+2\right)a^2-2\left(b^3+1\right)a+2b^3-b^2+1\ge0\)

Xét tam thức bậc 2: \(f\left(a\right)=\left(b^3-b+2\right)a^2-2\left(b^3+1\right)a+2b^3-b^2+1\)

Ta có: \(b^3+2-b\ge3b-b=2b>0\)

\(\Delta'=\left(b^3+1\right)^2-\left(b^3-b+2\right)\left(2b^3-b^2+1\right)\)

\(\Delta'=-\left(b-1\right)^2\left(b^4+b^3-b^2+b+1\right)\le0\) ; \(\forall b>0\)

\(\Rightarrow f\left(a\right)\ge0\) ; \(\forall a\)

Dấu "=" xảy ra khi \(\left(a;b\right)=\left(1;1\right)\)

Dương Thiên Tuệ
Xem chi tiết
Thắng Nguyễn
9 tháng 10 2018 lúc 23:12

bai nay de thoi ban

Dương Thiên Tuệ
10 tháng 10 2018 lúc 21:55

giúp mình với

Thắng Nguyễn
21 tháng 10 2018 lúc 19:58

\(\left(a+b+c;ab+bc+ca;abc\right)\rightarrow\left(3u;3v^2;w^3\right)\text{and}\left(u^2=tv^2\right)\)

BDT can chung minh la \(4\cdot3\left(9u^2-6v^2\right)3^2v^4+9w^6\cdot3^3\ge21\cdot3^3v^6\)

\(\Leftrightarrow3w^6\ge7v^6-4\left(3u^2-2v^2\right)v^4\)\(\Leftrightarrow3w^6\ge15v^6-12v^4u^2\)

\(\Leftrightarrow w^6\ge5v^6-4v^4u^2\)\(\Leftrightarrow w^3\ge\sqrt{5v^6-4v^4u^2}\)

Ta co BDT \(\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2\ge0\)

\(\Leftrightarrow6uv^2w^3+3u^2v^4-4v^6+4u^3w^3\ge w^6\)

\(\Leftrightarrow3uv^2-2u^3-2\sqrt{\left(u^2-v^2\right)^3}\le w^3\)

\(t\ge\frac{5}{4}\)Ta co \(w^3\le3uv^2-2u^3+2\sqrt{\left(u^2-v^2\right)^3}\) luon dung 

\(1\le t\le\frac{5}{4}\) thi ta can cm BDT  \(3uv^2-2u^3-2\sqrt{\left(u^2-v^2\right)^3}\ge\sqrt{5v^6-4v^4u^2}\)

\(\Leftrightarrow3uv^2-2u^3\ge\sqrt{5v^6-4v^4u^2}+2\sqrt{\left(u^2-v^2\right)^3}\)

\(\Leftrightarrow\left(3uv^2-2u^3\right)^2\ge\left(\sqrt{5v^6-4v^4u^2}+2\sqrt{\left(u^2-v^2\right)^3}\right)^2\)

\(\Leftrightarrow t(3-2t)^2\ge\left(2\sqrt{(t-1)^3}+\sqrt{5-4t}\right)^2\)

\(\Leftrightarrow t-1\ge4\sqrt{(t-1)^3(5-4t)}\)\(\Leftrightarrow(t-1)^2(8t-9)^2\ge0\) luon dung

Neet
Xem chi tiết
Lightning Farron
16 tháng 4 2017 lúc 16:27

Nhức nhối mãi bài này vì nó làm lag hết máy

Giải

Đặt \(x=\dfrac{b+c}{a};y=\dfrac{c+a}{b};z=\dfrac{a+b}{c}\)

Ta phải chứng minh \(Σ\dfrac{\left(x+2\right)^2}{x^2+2}\le8\)

\(\LeftrightarrowΣ\dfrac{2x+1}{x^2+2}\le\dfrac{5}{2}\LeftrightarrowΣ\dfrac{\left(x-1\right)^2}{x^2+2}\ge\dfrac{1}{2}\)

Lại theo BĐT Cauchy-Schwarz ta có:

\(Σ\dfrac{\left(x-1\right)^2}{x^2+2}\ge\dfrac{\left(x+y+z-3\right)^2}{x^2+y^2+z^2+6}\)

Ta còn phải chứng minh

\(2\left(x^2+y^2+z^2+2xy+2yz+2xz-6x-6y-6z+9\right)\)\(\ge x^2+y^2+z^2+6\)

\(\Leftrightarrow x^2+y^2+z^2+4\left(xy+yz+xz\right)-12\left(x+y+z\right)+12\ge0\)

Bây giờ có \(xy+yz+xz\ge3\sqrt[3]{x^2y^2z^2}\ge12\left(xyz\ge8\right)\)

Còn phải chứng minh \(\left(x+y+z\right)^2+24-12\left(x+y+z\right)+12\ge0\)

\(\Leftrightarrow\left(x+y+z-6\right)^2\ge0\) (luôn đúng)

Lightning Farron
16 tháng 4 2017 lúc 15:48

Bởi vì BĐT là thuần nhất, ta có thể chuẩn hóa \(a+b+c=3\). Khi đó

\(\dfrac{\left(2a+b+c\right)^2}{2a^2+\left(b+c\right)^2}=\dfrac{a^2+6a+9}{3a^2-6a+9}=\dfrac{1}{3}\left(1+2\cdot\dfrac{4a+3}{2+\left(a-1\right)^2}\right)\)

\(\le\dfrac{1}{3}\left(1+2\cdot\dfrac{4a+3}{2}\right)=\dfrac{4a+4}{3}\)

Tương tự ta cho 2 BĐT còn lại ta cũng có:

\(\dfrac{\left(2b+c+a\right)^2}{2b^2+\left(a+c\right)^2}\ge\dfrac{4b+4}{3};\dfrac{\left(2c+b+a\right)^2}{2c^2+\left(a+b\right)^2}\ge\dfrac{4c+4}{3}\)

Cộng theo vế 3 BĐT trên ta có:

\(Σ\dfrac{\left(2a+b+c\right)^2}{2a^2+\left(b+c\right)^2}\geΣ\left(4a+4\right)=8\)

Lightning Farron
16 tháng 4 2017 lúc 15:50

Câu hỏi của Neet - Toán lớp 9 | Học trực tuyến:Gazeta Matematia

còn câu này là USAMO 2003

Toàn đề máu mặt :)