a) (-\(\infty\);\(\dfrac{1}{3}\))\(\cap\)(\(\dfrac{1}{4}\);+\(\infty\))
b)\(\left(-\dfrac{11}{2};7\right)\cap\left(-2;\dfrac{27}{2}\right)\)
c)(0;12) \ [5;+\(\infty\))
d) R\[-1;1)
mọi người giúp em với ạ
1. Cho A=[–4;7] và B=(–\(\infty\);–2)∪ (3;+\(\infty\)). Khi đó A∩B là:
A) [–4;–2)∪ (3;7]
B) [–4;–2)∪ (3;7).
C) (–\(\infty\);2]∪ (3;+\(\infty\))
D)(–\(\infty\);–2)∪ [3;+\(\infty\)).
2. Cho A=(–\(\infty\);–2]; B=[3;+\(\infty\)) và C=(0;4). Khi đó tập (A∪B)∩ C là:
A) [3;4].
B) (–\(\infty\);–2]∪ (3;+\(\infty\)).
C) [3;4).
D)(–\(\infty\);–2)∪ [3;+\(\infty\)).
3. Cho A = (−∞; 5), B = (−∞; a) với a là số thực. Tìm a để A con B
A. a = 5.
B. a ≤ 5.
C. a ≥ 5.
D. B\A = B
Cho 0<a<b. Tập nghiệm của BPT (x-a)(ax+b)>0 là:
A. \(\left(-\infty;a\right)\cup\left(b;+\infty\right)\)
B. \(\left(-\infty;-\frac{b}{a}\right)\cup\left(a;+\infty\right)\)
C. \(\left(-\infty;b\right)\cup\left(a;+\infty\right)\)
D. \(\left(-\infty;a\right)\cup\left(\frac{b}{a};+\infty\right)\)
\(\left(x-a\right)\left(ax+b\right)=0\Rightarrow\left[{}\begin{matrix}x=a\\x=-\frac{b}{a}\end{matrix}\right.\)
\(\Rightarrow\) Nghiệm của BPT: \(\left(-\infty;-\frac{b}{a}\right)\cup\left(a;+\infty\right)\)
Xác định tập hợp
A = ( -3;5] \(\cup\) [8;10] \(\cup\) [2;8)
B = [0;2] \(\cup\) (\(-\infty;5\)] \(\cup\left(1;+\infty\right)\)
C = [ -4;7] \(\cup\) (0;10)
D = ( \(-\infty;3\) ] \(\cup\left(-5;+\infty\right)\)
E = \(\left(3;+\infty\right)\ \)\ ( \(-\infty;1\)]
F = ( 1;3] \ [0;4)
A=(-3;5] hợp [8;10] hợp [2;8)
=(-3;5) hợp [2;8) hợp [8;10]
=(-3;8) hợp [8;10]
=(-3;10]
B=[0;2] hợp (-vô cực;5] hợp (1;+vô cực)
=(-vô cực;5] hợp (1;+vô cực)
=(-vô cực;+vô cực)=R
C=[-4;7] hợp (0;10)
Vì (0;7] thuộc (0;10) nên [-4;7] hợp (0;10)=[-4;10)
D=(-vô cực;3] hợp (-5;+vô cực)
=(-5;3]
E=(3;+vô cực)\(-vô cực;1]
=(3;+vô cực)(Vì ko có phần tử nào có trong (3;+vô cực) nằm trong(-vô cực;1])
F=(1;3]\[0;4)=rỗng(Bởi vì (1;3] là tập con của [0;4))
Có thể kết luận gì về số a biết :
a) (1 ; - 3 ) \(\cap\) (a ; + \(\infty\) ) = \(\varnothing\)
b) (5 ; a ) U ( 2 ; 8 ) = ( 2 ; 8 )
c) [ 3 ; 12 ) / ( - \(\infty\) ; a ) = \(\varnothing\)
d) C\(_R\) ( - \(\infty\); a ) = [ 3 ; + \(\infty\))
*Cần gấppp ạ cảm ơn*
Cho \(A=(-\infty;1],B=[1;+\infty);C=(0;1]\)
Kết quả nào sau đây sai
A :\(\left(A\cup B\right)/C=(-\infty;0]\cup\left(1;+\infty\right)\)
B : \(A\cap B\cap C=\left\{-1\right\}\)
C:\(A\cup B\cup C=\left(-\infty;+\infty\right)\)
D:\((-\infty;-1]\cup\left(3;+\infty\right)\)
Cho A = \(\left\{x\in R:-5\le x< 7\right\}\) . Khi đó \(C_R^A\) là :
A . \((7;+\infty)\) B . \((-\infty;7]\cup\left(5;+\infty\right)\) C . \((-\infty;5]\cup\left(7;+\infty\right)\) D . \(\left(-\infty;5\right)\cup[7;+\infty)\)
ta có:
A = {x\(\in\) R; -5 \(\le\) x < 7}
\(\Rightarrow\) A = [-5;7)
\(\Rightarrow\) \(C^A_R\) = (-\(\infty\);-5) \(\cup\) [7;+\(\infty\))
Đáp án: D
cho nửa khoảng A=(-\(\infty\);-m] và khoảng B=(2m-5;23). gọi S là tập hợp các số thực m để \(A\cup B=A\). hỏi S là tập con của tập hợp nào sau đây?
A. (-\(\infty\);-23)
B. (-\(\infty\);0]
C. (-23;+\(\infty\))
D. \(\varnothing\).
Để A hợp B=A thì B là tập con của A
=>2m-5<23 và 23<=-m
=>2m<28 và -m>=23
=>m<=-23 và m<14
=>m<=-23
=>Chọn B
Giá trị của x thuộc tập nào sau đây để thỏa mãn: \(\left|2x-4\right|=2x-4\)
A. \([2;+\infty)\)
B. \(\left(-\infty;2\right)\)
C. \((-\infty;2]\)
D. \(\left(2;+\infty\right)\)
ĐK: \(x\ge2\)
PT \(\Leftrightarrow\left[{}\begin{matrix}2x-4=2x-4\\2x-4=4-2x\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x\in R\\x=2\end{matrix}\right.\)
Kết hợp với điều kiện \(\Rightarrow x\ge2\)
Vậy \(x\in[2;+\infty)\)
Cho tập hợp A = { x \(\in R\) | x \(\le-12\) } được viết dưới dạng đoạn, khoảng, nửa khoảng là:
A. A = ( \(-\infty\) ; -12 ] B. A = {.... ; -10; -11; -12 } C. A = (\(-\infty\) ; -12 ) D. A = [ -12; \(+\infty\) ]
tìm a sao cho
a/ \(\left[a;\frac{a+1}{2}\right]\in\left(-\infty;-1\right)\cup\left(1;\infty\right)\)
b/\(\left[a;\frac{a+1}{2}\right]\in\left(-\infty;5\right)\cup\left(-3;\infty\right)\)
a/ \(\Leftrightarrow\left[{}\begin{matrix}a>1\\\frac{a+1}{2}< -1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}a>1\\a< -3\end{matrix}\right.\)
b/ \(\left(-\infty;5\right)\cup\left(-3;+\infty\right)=R\) nên với mọi a thì \(\left[a;\frac{a+1}{2}\right]\in\left(-\infty;5\right)\cup\left(-3;+\infty\right)\)