Tìm các cặp x,y biết \(x^2-4xy+5y^2=169\)
Tìm x; y nguyên biết x^2-4xy+5y^2=169
Tìm x;y thuộc Z biết :
x2-4xy+5y4=169
tìm các cặp số nguyên (x;y) thỏa mãn `x^2 +5y^2 +4xy=2023`
Lời giải:
$x^2+5y^2+4xy=2023$
$\Leftrightarrow (x^2+4y^2+4xy)+y^2=2023$
$\Leftrightarrow (x+2y)^2+y^2=2023$
Ta biết rằng 1 scp khi chia cho $4$ dư $0$ hoặc $1$
Tức là $(x+2y)^2\equiv 0,1\pmod 4$ và $y^2\equiv 0,1\pmod 4$
$\Rightarrow (x+2y)^2+y^2\equiv 0,1,2\pmod 4$
Mà $2023\equiv 3\pmod 4$
Do đó không tồn tại $x,y$ nguyên để $(x+2y)^2+y^2=2023$
Tìm các cặp số nguyên x y thỏa mãn \(x^2+5y^2+2y-4xy-3=0\)
\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(y^2+2y+1\right)=4\)
\(\Leftrightarrow\left(x-2y\right)^2+\left(y+1\right)^2=4\)
\(\Rightarrow\left(y+1\right)^2\le4\Rightarrow\left[{}\begin{matrix}\left(y+1\right)^2=0\\\left(y+1\right)^2=4\end{matrix}\right.\)
\(\Rightarrow y=\left\{-1;-3;1\right\}\)
Thế vào pt ban đầu tìm x nguyên tương ứng
\(x^2+5y^2+2y-4xy-3=0\left(1\right)\\ \Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(y^2+2y+1\right)-4=0\\ \Leftrightarrow\left(x-2y\right)^2+\left(y+1\right)^2=4\)
Ta có: \(\left(x-2y\right)^2+\left(y+1\right)^2=4\ge\left(y+1\right)^2\)
Mà \(y\in Z\Rightarrow\left(y+1\right)^2\in Z\Rightarrow\left(y+1\right)^2\in\left\{0;1;4\right\}\)
Với \(\left(y+1\right)^2=0\Rightarrow y+1=0\Rightarrow y=-1\)
Thay y=-1 vào pt (1) ta tìm được \(\left\{{}\begin{matrix}x=-4\\x=0\end{matrix}\right.\)
Với \(\left(y+1\right)^2=1\Rightarrow\left[{}\begin{matrix}y+1=1\\y+1=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}y=0\\y=-2\end{matrix}\right.\)
Thay y=0 vào pt (1) ta không tìm được x nguyên
Thay y=-2 vào pt (1) ta không tìm được x nguyên
Với \(\left(y+1\right)^2=4\Rightarrow\left[{}\begin{matrix}y+1=-2\\y+1=2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}y=-3\\y=1\end{matrix}\right.\)
Thay y=-3 vào pt (1) tìm được \(x=-6\)
Thay y=1 vào pt (1) tìm được \(x=2\)
Tìm tất cả các cặp số nguyên (x;y) thoả mãn: x^2 + 5y^2 + 4xy = 2023
Tìm các cặp số nguyên (x;y) thỏa mãn điều kiện x2 - 4xy + 5y2 = 2(x - y)
tìm các cặp số thực x y thỏa mãn 4x^2+4y-4xy+5y^2+1=0
\(4x^2+4y-4xy+5y^2+1=0\)
\(\Leftrightarrow\left(2x-y\right)^2+\left(2y+1\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x=-\frac{1}{4}\\y=-\frac{1}{2}\end{cases}}\)
tìm tất cả các cặp số thực (x;y) sao cho y là số nhỏ nhất thoả mãn điều kiện \(x^2+5y^2+2y+4xy-3=0\)
\(x^2+5y^2+2y+4xy-3=0\)
\(\Leftrightarrow\)\((x^2+4xy+4y^2)+(y^2+2y+1)=4\)
\(\Leftrightarrow\)\((x+2y)^2+(y+1)^2=4\)
\(\Leftrightarrow\)\((x+2y)^2=4-(y+1)^2\)
\(\Leftrightarrow\)\((x+2y)^2=(2-y-1)(2+y+1)\)
\(\Leftrightarrow\)\((x+2y)^2=(1-y)(3+y)\)
\(Vì \) \((x+2y)^2\geq0\)
\(\Rightarrow\)\((1-y)(3+y)\geq0\)
\(\Rightarrow\)\(\left[\begin{array}{}
\begin{cases}
1-y\geq0\\
3+y\geq0
\end{cases}\\
\begin{cases}
1-y\leq0\\
3+y\leq0
\end{cases}
\end{array} \right.\)
\(\Rightarrow\)\(\left[\begin{array}{}
\begin{cases}
y\leq1\\
y\geq-3
\end{cases}\\
\begin{cases}
y\geq1\text{(Vô lí)}\\
y\leq-3\text{(Vô lí)}
\end{cases}
\end{array} \right.\)
\(\Rightarrow\)\(-3\leq y\leq1\)
\(\text{Mà y là số nhỏ nhất}\)
\(\Rightarrow\)\(y=-3\)
\(\Rightarrow\)\(x+2.(-3)=0\text{ (Vì }(x+2y)^2\geq0)\)
\(\Rightarrow\)\(x=6\)
\(\text{Vậy cặp số (x,y) thỏa mãn yêu cầu bài toán là: (6;-3)}\)
Nếu mình đúng cho mình xin 1 like nha
Tìm\(x;y\in Z\)
a)\(6x^2+5y^2=74\)
b)\(x^2-4xy+5y^2=169\)
\(x^2-4xy+5y^2=169\)
\(x^2-4xy+4y^2+y^2-169=0\)
\(\left(x^2-4xy+4y^2\right)+\left(y^2-13^2\right)=0\)
\(\left(x-2y\right)^2+\left(y-13\right)\left(y+13\right)=0\)
b/ \(\Leftrightarrow x^2-4xy+4y^2+y^2=13^2\)
\(\Leftrightarrow\left(x-2y\right)^2=\left(13^2-y^2\right)\)
\(\Rightarrow y^2\le13^2\)và \(13^2-y^2\)là số chính phương . Do đó :
\(y^2=0\)hay \(y=0\)
Thay vào ta có các nghiệm sau \(\left(13,0\right);\left(-13;0\right)\)
\(b,x^2-4xy+5y^2=169.\)
\(\Rightarrow x^2-2.x.2y+\left(2y\right)^2+y^2-169=0\)
\(\Rightarrow\left(x-2\right)^2+\left(y^2-13^2\right)=0\)
\(\Rightarrow\left(x-2\right)^2+\left(y-13\right).\left(y+13\right)=0\)
\(\Rightarrow\hept{\begin{cases}\left(x-2\right)^2=0\\y-13=0\\y+13=0\end{cases}}\Rightarrow\hept{\begin{cases}x-2=0\\y=13\\y=-13\end{cases}}\Rightarrow\hept{\begin{cases}x=2\\y=13\\y=-13\end{cases}}\)